An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health.
Bisphenol A (BPA) is a synthetic non-steroidal oestrogen used in the production of plastics. BPA can cause alterations in the endocrine system of human beings and animals at varied stages of development. During puberty, altered morphological, sexual behaviour and completion of the epididymal development occur. Therefore, this study aimed to evaluate the effects of BPA on epididymal development during the peripubertal period of rats. Male Wistar rats were treated with BPA via gavage at doses of 20 μg/kg or 200 μg/kg per day [post-natal day (PND] 36-66). The control group received the vehicles under the same conditions. Feed and water were provided ad libitum. On PND 67, the epididymis was removed, weighed, divided into caput/corpus and cauda sections. It was then used for sperm count determination; histopathological and stereological evaluation; inflammatory cell enzymatic profiling (myeloperoxidase activity - MPO; N-acetylglucosaminidase - NAG); immunohistochemistry for IL-6; and evaluation of superoxide anion levels and malondialdehyde (MDA). Exposure to BPA at 200 μg/kg caused a significant increase of MPO activity and immunoreactivity to IL-6 (interleukin-6) as well as remodelling of tissue components in the caput/corpus and cauda regions of the epididymis. Under these experimental conditions, it is concluded that BPA alters post-natal epididymal development.
Alterations in the circadian cycle are known to cause physiological disorders in the hypothalamic–pituitary–adrenal and the hypothalamic–pituitary–gonadal axes in adult individuals. Therefore, the present study aimed to evaluate whether exposure of pregnant rats to constant light can alter the reproductive system development of male offspring. The dams were divided into two groups: a light–dark group (LD), in which pregnant rats were exposed to an LD photoperiod (12 h/12 h) and a light–light (LL) group, in which pregnant rats were exposed to a photoperiod of constant light during the gestation period. After birth, offspring from both groups remained in the normal LD photoperiod (12 h/12 h) until adulthood. One male of each litter was selected and, at adulthood (postnatal day (PND) 90), the trunk blood was collected to measure plasma testosterone levels, testes and epididymis for sperm count, oxidative stress and histopathological analyses, and the spermatozoa from the vas deferens to perform the morphological and motility analyses. Results showed that a photoperiod of constant light caused a decrease in testosterone levels, epididymal weight and sperm count in the epididymis, seminiferous tubule diameter, Sertoli cell number, and normal spermatozoa number. Histopathological damage was also observed in the testes, and stereological alterations, in the LL group. In conclusion, exposure to constant light during the gestational period impairs the reproductive system of male offspring in adulthood.
Good sleep quality has a direct effect on the activity of the neuroendocrine-reproductive control axis and oxidative stress. Thus, the aim of the present study was to evaluate whether sleep restriction (SR) during the peripubertal period impaired the postnatal development of the epididymis in Wistar rats. After 21 days SR (18h per day), epididymides were collected on Postnatal Day (PND) 62 for evaluation of oxidative stress markers, inflammatory profile, sperm count and histopathological and stereological analyses; in addition, the motility of spermatozoa from the vas deferens was examined. SR significantly increased lipid peroxidation and glutathione levels in the caput and cauda epididymidis, and increased levels of total radical-trapping antioxidant potential in the caput epididymidis only. Neutrophil migration to the caput or corpus epididymidis was decreased by SR, and the size of the luminal compartment in the 2A region and the epithelial compartment in the 5A/B region was also decreased. In these regions, there was an increase in the size of the interstitial compartment. The percentage of immotile spermatozoa was higher in the SR group. In conclusion, SR affects epididymal postnatal development, as well as sperm motility, in association with increased oxidative stress and a decrease in the size of the epithelial compartment in the cauda epididymidis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.