Bisphenol A (BPA) is a synthetic non-steroidal oestrogen used in the production of plastics. BPA can cause alterations in the endocrine system of human beings and animals at varied stages of development. During puberty, altered morphological, sexual behaviour and completion of the epididymal development occur. Therefore, this study aimed to evaluate the effects of BPA on epididymal development during the peripubertal period of rats. Male Wistar rats were treated with BPA via gavage at doses of 20 μg/kg or 200 μg/kg per day [post-natal day (PND] 36-66). The control group received the vehicles under the same conditions. Feed and water were provided ad libitum. On PND 67, the epididymis was removed, weighed, divided into caput/corpus and cauda sections. It was then used for sperm count determination; histopathological and stereological evaluation; inflammatory cell enzymatic profiling (myeloperoxidase activity - MPO; N-acetylglucosaminidase - NAG); immunohistochemistry for IL-6; and evaluation of superoxide anion levels and malondialdehyde (MDA). Exposure to BPA at 200 μg/kg caused a significant increase of MPO activity and immunoreactivity to IL-6 (interleukin-6) as well as remodelling of tissue components in the caput/corpus and cauda regions of the epididymis. Under these experimental conditions, it is concluded that BPA alters post-natal epididymal development.
An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health.
Ethanol consumption is associated with spermatogenesis damage and testosterone level alterations. Alcohol remains the most commonly used substance among athletes and sports enthusiasts. This study evaluated whether resistance physical exercise can reduce the testicular damage caused by ethanol exposure. A total of 36 ethanol drinking (UChB) rats were divided into four groups: C (control rats), ETOH (ethanol consumption), ETOH + T (ethanol consumption + physical training), and T (group physical training). The physical training component of the T and ETOH + T groups was based on a resistance training model consisting of four sets of 10 jumps, with an increasing overload of 50-70% of the body weight attached to the chest three times per week. Rats in the ETOH and ETOH +T groups received 10% ethanol. At postnatal day 90, the rats were sacrificed. Blood sample was collected for hormonal analysis, and the testicles were weighed and processed for histopathological, morphometric, and immunohistochemical analyses. The ETOH group showed an increase in testosterone levels. The immunohistochemical of androgen receptor and the absolute weight of the testes were higher in the ETOH and ETOH + T groups, while the ETOH animals showed a decreased weight gain index. The number of abnormal seminiferous tubules increased in the ETOH and T groups compared to those in the control group (C); however, the association with treatment (ETOH + T group) prevented this effect and decreased caspase-3 production. In conclusion, these findings show that the combination of ethanol consumption and resistance physical exercise can prevent testicular damage in adult UChB rats.
Puberty is characterized by psychosomatic alterations, whereas chronic ethanol consumption is associated with morphophysiological changes in the male reproductive system. The purpose of this study was to show the toxic effects on testis and epididymal morphophysiology after ethanol administration during peripuberty. To this end, male Wistar rats were divided into two groups: ethanol (E) group: received a 2 g dose of ethanol/kg in 25% (v/v); and control (C) group: received the same volume of filtered water; both were treated by gavage for 54 days. On the 55th day of the experiment, epididymis, and testis were collected for sperm count, histopathology, mast cell count, and morphometry. The vas deferens was collected for sperm motility analysis. The femur and testicle were used for cytogenetic analysis. Ethanol exposure caused reduction in daily sperm production (DSP) and in sperm motility, multinucleated cells or those having no chromosomal content, and late chromosome migrations. No changes were observed in the number of chromosomes in the mitotic analysis. However, some alterations could be seen in meiocytes at different stages of cell division. Stereological analysis of the epididymis indicated reorganization of its component in the 2A and 5A/B regions. The epididymal cauda had greater recruitment, and both degranulated and full mast cells showed an increase in the initial segment, in the ethanol group. In conclusion, ethanol administration during the pubertal phase affects epididymis and testis in adult rats, as indicated mainly by our new findings related to mast cell number and meiotic impact. Microsc. Res. Tech. 79:541-549, 2016. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.