A sensitive search has been made in Drosophila melanogaster DNA for short repetitive sequences interspersed with single copy sequences. Five kinds of measurements all yield the conclusion that there are few short repetitive sequences in this genome: () Comparison of the kinetics of reassociation of short (360 nucleotide) and long (1,830 nucleotide) fragments of DNA; 2) reassociation kinetics of long fragments (2,200 nucleotide) with an excess of short (390 short nucleotide) fragments; 3) measurement of the size of S1 nuclease resistant reassociated repeated sequences; 4) measurement of the hyperchromicity of reassociated repetive fragments as a function of length; 5) direct assay by kinetics of reassociation of the amount of single copy sequence present on 1,200 nucletodie long fragments which also contain repetitive sequences.
The organization of repetitive and single copy DNA sequences in sea urchin DNA has been examined with the single strand specific nuclease S1 from Aspergillus. Conditions and levels of enzyme were established so that single strand DNA was effectively digested while reassociated divergent repetitive duplexes remained enzyme resistant. About 25% of sea urchin DNA reassociates with repetitive kinetics to form S1 resistant duplexes of two distinct size classes derived from long and short repetitive sequences in the sea urchin genome. Fragments 2,000 nucleotides long were reassociated to Cot 20 and subjected to controlled digestion with S1 nuclease. About half of the resistant duplexes (13% of the DNA) are short, with a mode size of about 300 nucleotide pairs. This class exhibits significant sequence divergence, and principally consists of repetitive sequences which were interspersed with single copy sequences. About one-third of the long duplexes (4% of the DNA) are reduced in size after extensive S1 nuclease digestion to about 300 nucleotide pairs. About two-thirds of the long resistant duplexes (8% of the DNA) remains long after extensive SI nuclease digestion. These long reassociated duplexes are precisely base paired. The short duplexes are imprecisely paired with a melting temperature about 9 degrees C below that of precisely paired duplexes of the same length. The relationship between length of repetitive duplex and precision of repetition is confirmed by an independent method and has been observed in the DNA of a number of species over a wide phylogenetic area.
A naturally occurring opal suppressor serine tRNA has been purified from chicken liver and used as a probe to isolate the corresponding gene from a library of chicken DNA in bacteriophage lambda. This minor tRNA is encoded by a single-copy gene that is not part of a tRNA gene cluster. DNA sequence analysis of the gene and its flanking DNA segments shows that the gene is encoded in an 87-base-pair segment without intervening sequences and specifies a tRNA that reads the termination codon UGA. This gene has additional nucleotides in the 5' internal promoter region but has a normal 3' internal promoter sequence and the usual termination signal.
Part of the repeated deoxyribonucleic acid (DNA) in the chicken genome had a clustered organization. The following description of clustered repeated sequences is derived both from analysis of DNA segments cloned in lambda and from hybridization of individual cloned sequences to Southern blots of restricted total DNA. A cluster usually exceeds 20 kbp in length and consists principally, if not entirely, or repetitive DNA. Each cluster contains one cope of several different repeated sequences. The individual sequences occur several hundred times in the genome, but only once per cluster. Many of the clusters contain the same assortment of sequences but in scrambled order. In the genome, those repeated sequences that are elements of clusters occur mainly within the clustered context and are seldom, if ever, found as isolated elements flanked by nonrepeated DNA. These aspects of cluster organization suggest that the clustered sequences undergo limited rearrangement, maintaining the associations within clusters but allowing variability of sequence arrangement from cluster to cluster. The clusters that occupy the cloned DNA segments together represent at least 10% of the repetitive DNA of the chicken.
Octopine has been detected in normal tobacco leaf and stem tissue, normal sunflower stem tissue, pinto bean leaves, and normal tobacco callus tissue in culture. Octopine was identified in extracts by means of electrophoresis and chromatography in several solvent systems. Tobacco and sunflower tumor lines induced by various strains of Agrobacterium tumefaciens were found to contain from 1 to 240 times as much octopine as the normal plant tissues examined. Several strains of A. tumefaciens produce undifferentiated tobacco tumors containing high levels of octopine, but produce undifferentiated sunflower tumors' containing normal levels of octopine and high levels of arginine. Further, strain CG1C of A. tumefaciens produces in tobacco an undifferentiated tumor which contains high levels of octopine and a teratoma which contains normal levels of octopine. This evidence shows that there is no consistent relationship between the causative strain of A. tumefaciens and the octopine content of the resulting crown gall tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.