The role of dairy product consumption in mortality generally appeared to be neutral in men. In women, dairy fat intake was associated with slightly increased all-cause and IHD mortality. More research is warranted on a possible protective effect of fermented milk on stroke mortality.
The authors show how the use of inequality constraints on parameters in structural equation models may affect the distribution of the likelihood ratio test. Inequality constraints are implicitly used in the testing of commonly applied structural equation models, such as the common factor model, the autoregressive model, and the latent growth curve model, although this is not commonly acknowledged. Such constraints are the result of the null hypothesis in which the parameter value or values are placed on the boundary of the parameter space. For instance, this occurs in testing whether the variance of a growth parameter is significantly different from 0. It is shown that in these cases, the asymptotic distribution of the chi-square difference cannot be treated as that of a central chi-square-distributed random variable with degrees of freedom equal to the number of constraints. The correct distribution for testing 1 or a few parameters at a time is inferred for the 3 structural equation models mentioned above. Subsequently, the authors describe and illustrate the steps that one should take to obtain this distribution. An important message is that using the correct distribution may lead to appreciably greater statistical power.
In maximum likelihood estimation of latent class models, it often occurs that one or more of the parameter estimates are on the boundary of the parameter space; that is, that estimated probabilities equal 0 (or 1) or, equivalently, that logit coefficients equal minus (or plus) infinity. This not only causes numerical problems in the computation of the variance-covariance matrix, it also makes the reported confidence intervals and significance tests for the parameters concerned meaningless. Boundary estimates can, however, easily be prevented by the use of prior distributions for the model parameters, yielding a Bayesian procedure called posterior mode or maximum a posteriori estimation. This approach is implemented in, for example, the Latent GOLD software packages for latent class analysis (Vermunt & Magidson, 2005). Little is, however, known about the quality of posterior mode estimates of the parameters of latent class models, nor about their sensitivity for the choice of the prior distribution. In this paper, we compare the quality of various types of posterior mode point and interval estimates for the parameters of latent class models with both the classical maximum likelihood estimates and the bootstrap estimates proposed by De Menezes (1999). Our simulation study shows that parameter estimates and standard errors obtained by the Bayesian approach are more reliable than the corresponding parameter estimates and standard errors obtained by maximum likelihood and parametric bootstrapping.
Applying ANN models to processing accelerometer data from children is promising for classifying common physical activities. The highest percentage of correctly classified activities was achieved when using triaxial accelerometer data from the hip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.