Necrotizing fasciitis caused by community-associated MRSA is an emerging clinical entity. In areas in which community-associated MRSA infection is endemic, empirical treatment of suspected necrotizing fasciitis should include antibiotics predictably active against this pathogen.
The epidemic character of community-associated methicillin-resistant Staphylococcus aureus, especially the geographically widespread clone USA300, is poorly understood. USA300 isolates carry a type IV staphylococcal chromosomal cassette mec (SCCmec) element conferring beta-lactam antibiotic class resistance and a putative pathogenicity island, arginine catabolic mobile element (ACME). Physical linkage between SCCmec and ACME suggests that selection for antibiotic resistance and for pathogenicity may be interconnected. We constructed isogenic mutants containing deletions of SCCmec and ACME in a USA300 clinical isolate to determine the role played by these elements in a rabbit model of bacteremia. We found that deletion of type IV SCCmec did not affect competitive fitness, whereas deletion of ACME significantly attenuated the pathogenicity or fitness of USA300. These data are consistent with a model in which ACME enhances growth and survival of USA300, allowing for genetic "hitchhiking" of SCCmec. SCCmec in turn protects against exposure to beta-lactams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.