For the bovine preimplantation embryo, insulin-like growth factor-I (IGF-I) is a survival factor that blocks the induction of apoptosis and reduces the decrease in development caused by heat shock. The first objective was to determine the signaling pathways whereby IGF-I acts to increase embryo cell number while inhibiting heat-shock induced apoptosis. Exposure of embryos to heat shock reduced cell number and increased percent apoptosis, but IGF-I increased cell number and blocked induction of apoptosis caused by heat shock. Actions of IGF-I to increase cell number were blocked by treatment with the mitogen activated protein kinase kinase (MAPKK) inhibitor PD 98059 whereas the phosphatidylinositol 3-kinase (PI3K) inhibitor LY 294002 had no effect. Conversely, LY 294002 but not PD 98059 blocked actions of IGF-I to inhibit induction of apoptosis caused by heat shock. The second objective was to determine whether IGF-I blocks effects of heat shock on development to the blastocyst stage by preventing apoptosis. Culture of embryos with IGF-I was effective in blocking the reduction in blastocyst development caused by heat shock-this action occurred even in the presence of LY 294002. Addition of another inhibitor of apoptosis, the caspase-3 inhibitor z-DEVD-fmk, did not mimic the protective effects of IGF-I on blastocyst development. Surprisingly, IGF-I was not effective in blocking the reduction in blastocyst development caused by heat shock when cultured with z-DEVD-fmk. In conclusion, the anti-apoptotic actions of IGF-I require PI3K signaling while actions to promote proliferation require MAPKK signaling. Moreover, actions of IGF-I to allow heat-shocked embryos to continue development to the blastocyst stage are independent of its anti-apoptotic effects.
Insulin-like growth factor-I (IGF-I) is a survival factor for preimplantation mammalian embryos exposed to stress. One stress that compromises preimplantation embryonic development is elevated temperature (i.e., heat shock). Using bovine embryos produced in vitro as a model, it was hypothesized that IGF-I would protect preimplantation embryos by reducing the effects of heat shock on total cell number, the proportion of blastomeres that undergo apoptosis, and the percentage of embryos developing to the blastocyst stage. In experiment 1, embryos were cultured with or without IGF-I; on Day 5 after insemination, embryos >or=16 cells were cultured at 38.5 degrees C for 24 h or were subjected to 41 degrees C for 9 h followed by 38.5 degrees C for 15 h. Heat shock reduced the total cell number at 24 h after initiation of heat shock and increased the percentage of blastomeres that were apoptotic. Effects of heat shock were less for IGF-I-treated embryos. Experiment 2 was conducted similarly except that embryos were allowed to develop to Day 8 after insemination. The percentage reduction in blastocyst development for heat-shocked embryos compared with those maintained at 38.5 degrees C was less for embryos cultured with IGF-I than for control embryos. Heat shock reduced the total cell number in blastocysts and increased the percentage of blastomeres that were apoptotic, whereas IGF-I-treated embryos had increased total cell number and a reduced percentage of apoptosis. Taken together, these results demonstrate that IGF-I can serve as a survival factor for preimplantation bovine embryos exposed to heat shock by reducing the effects of heat shock on development and apoptosis.
Galectin 15 (LGALS15) is expressed specifically by the endometrial luminal epithelium (LE) of the ovine uterus in concert with blastocyst growth, elongation, and implantation. LGALS15 contains a predicted carbohydrate recognition domain (CRD) as well as LDV and RGD recognition sequences for integrin binding. Studies tested the hypothesis that LGALS15 is a secreted regulator of blastocyst development, as well as growth, migration, adhesion, and apoptosis of trophoblast. Bovine embryos were produced in vitro by standard conditions, and putative zygotes were cultured in the presence of recombinant ovine LGALS15. Rates of embryo cleavage and blastocyst formation were not affected by LGALS15. LGALS15 moderately increased proliferation of ovine trophectoderm (oTr) cells. Staurosporine elicited apoptosis of oTr cells, which could be partially inhibited by LGALS15. Migration of oTr cells was stimulated by LGALS15 that was dependent on Jun N-terminal kinase (JNK). A dose-dependent increase in oTr cell attachment to LGALS15 was found that could be inhibited by cyclic GRGDS, but not GRADS, peptides. Mutation of the LDVRGD integrin binding sequence of LGALS15 to LADRAD decreased its ability to promote oTr cell attachment, whereas mutation of the CRD had little effect. LGALS15 induced formation of robust focal adhesions in oTr cells that was abolished by mutation of the LDVRGD sequence. Collectively, these results support the hypothesis that LGALS15 stimulates trophectoderm cell migration and attachment via integrin binding and activation which are critical to blastocyst elongation and implantation.
The purpose of this study was to evaluate associations of lactation, somatic cell count score (SCCS) at breeding, milk yield, lactation number, interval from calving to breeding (days open), number of times inseminated, and season of breeding on fetal loss for lactating Holstein females (both first-parity and multiparous cows) and nonlactating Holstein heifers in a hot climate. Females were palpated between d 40 and 50 of gestation and again at d 70 to 80 to determine pregnancy status. Early fetal loss was defined as a loss that occurred after d 40 to 50 but before d 70 to 80. Mid-to-late fetal loss represented losses after d 70 to 80 but before expected calving. Lactating females had higher early (P = 0.055) and mid-to-late fetal loss (P < 0.05) than nonlactating heifers. Those lactating females with increased days open experienced greater early (P < 0.05) and mid-to-late fetal loss (P = 0.055), whereas lactating females with an elevated SCCS encountered greater mid-to-late fetal loss (P < 0.01). Milk yield, lactation number, number of times inseminated, and season were not associated with early or mid-to-late fetal loss. For nonlactating heifers, there were no associations between number of times inseminated, season, or age at breeding on early or mid-to-late fetal loss. In conclusion, lactating females were more likely to suffer early and mid-to-late fetal loss than nonlactating heifers. Also, days open and SCCS at breeding were related to ability of lactating females to maintain pregnancy, but there were no relationships between fetal loss and milk yield, lactation number, number of times inseminated, or season.
Administration of recombinant bovine somatotropin (bST) to lactating dairy cows during heat stress increases milk yield, but it also can increase body temperature and may therefore compromise fertility. However, it is possible that bST treatment could increase fertility during heat stress because it has been reported to increase fertility in lactating cows. In addition, bST increases secretion of insulin-like growth factor-I (IGF-I) that promotes embryo survival. The purpose of this study was to determine effects of bST on reproductive function in lactating dairy cows during heat stress. The experiment was conducted in southern Georgia from July to November 2005 using lactating Holstein cows (n = 276 for reproductive traits). For first service timed artificial insemination (TAI), cows were presynchronized with 2 injections of PGF(2alpha) given 14 d apart followed by a modified Ovsynch protocol (GnRH and insemination at 72 h following PGF(2alpha) ). Pregnancy was diagnosed by using ultrasonography on d 29 and reconfirmed by palpation between d 45 and 80 post-TAI. Nonpregnant cows were resynchronized with the modified Ovsynch protocol and received a second TAI. Treatment with bST started 1 wk before the start of Ovsynch and continued at 2-wk intervals. Blood samples were collected from a subset of cows to determine IGF-I profiles immediately before the first bST injection, 1 wk later, and at d 35 of bST treatment. Rectal temperatures were assessed on d 29 of bST treatment. Pregnancy rates (d 45 to 80 post-TAI) did not differ between bST and control cows for first- (16.7 vs. 15.2%) or second-service TAI (14.8 vs. 17.2%). Plasma concentrations of IGF-I and milk yield were greater for bST-treated cows following the initiation of bST treatment and bST increased rectal and vaginal temperatures. Body condition score was less for bST-treated cows. In conclusion, treatment with bST during heat stress increased IGF-I concentrations, milk yield over time, and rectal and vaginal temperatures without affecting first- or second-service pregnancy rates. Thus, at least under certain housing conditions, bST can be used to improve milk yield during heat stress without compromising fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.