The mechanisms underlying prion-linked neurodegeneration remain to be elucidated, despite several recent advances in this field. Herein, we show that soluble, low molecular weight oligomers of the full-length prion protein (PrP), which possess characteristics of PrP to PrPsc conversion intermediates such as partial protease resistance, are neurotoxic in vitro on primary cultures of neurons and in vivo after subcortical stereotaxic injection. Monomeric PrP was not toxic. Insoluble, fibrillar forms of PrP exhibited no toxicity in vitro and were less toxic than their oligomeric counterparts in vivo. The toxicity was independent of PrP expression in the neurons both in vitro and in vivo for the PrP oligomers and in vivo for the PrP fibrils. Rescue experiments with antibodies showed that the exposure of the hydrophobic stretch of PrP at the oligomeric surface was necessary for toxicity. This study identifies toxic PrP species in vivo. It shows that PrP-induced neurodegeneration shares common mechanisms with other brain amyloidoses like Alzheimer disease and opens new avenues for neuroprotective intervention strategies of prion diseases targeting PrP oligomers.
Prion diseases are neurodegenerative infectious disorders for which no prophylactic regimens are known. In order to induce antibodies/auto-antibodies directed against surface-located PrP c , we used a covalently linked dimer of mouse prion protein expressed recombinantly in Escherichia coli. Employing dimeric PrP as an immunogen we were able to effectively overcome autotolerance against murine PrP in PrP wild-type mice without inducing obvious side effects. Treatment of prion-infected mouse cells with polyclonal anti-PrP antibodies generated in rabbit or auto-antibodies produced in mice significantly inhibited endogenous PrP Sc synthesis. We show that polyclonal antibodies are binding to surface-located PrP c , thereby interfering with prion biogenesis. This effect is much more pronounced in the presence of full IgG molecules, which, unlike Fab fragments, seem to induce a significant cross-linking of surface PrP. In addition, we found immune responses against different epitopes when comparing antibodies induced in rabbits and PrP wild-type mice. Only in the auto-antibody situation in mice an immune reaction against a region of PrP is found that was reported to be involved in the PrP Sc conversion process. Our data point to the possibility of developing means for an active immunoprophylaxis against prion diseases.
The critical initial event in the pathophysiology of transmissible spongiform encephalopathies (TSEs) appears to be the conversion of the cellular prion protein (PrP C ) into the abnormal isoform PrP Sc . This isoform forms high-molecular-weight protease K (PK) resistant aggregates that accumulate in the central nervous system of affected individuals. We have selected nuclease-resistant 2'-amino-2'-deoxypyrimidine-modified RNA aptamers which recognize a peptide comprising amino acid residues 90 ± 129 of the human prion protein with high specificity. This domain of prion proteins is thought to be functionally important for the conversion of PrP C into its pathogenic isoform PrP Sc and is highly homologous among prion proteins of various species including mouse, hamster, and man. Consequently, aptamer DP7 binds to the full-length human, mouse, and hamster prion protein. At low concentrations in the growth medium of persistently prion-infected neuroblastoma cells, aptamer DP7 significantly reduced the relative proportion of de novo synthesized PK-resistant PrP Sc within only 16 h. These findings may open the door towards a rational development of a new class of drugs for the therapy or prophylaxis of prion diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.