Cancer is a global health issue that is rising swiftly with younger people and an increased number of patients. The role of human microbiota in the pathophysiology of tumors has been paid more and more attention. Microecologics including prebiotics, probiotics, and synbiotics are among the best validated/proven resources for the application of microbiological prophylaxis and therapy. There is strong evidence that microecologics have anti-cancer activity and their potential association with cancer is significant. In this review, we will focus on the role of prebiotics, probiotics, and synbiotics in tumor suppression in maintaining the colon barrier, metabolism, immune regulation, inhibition of host tumor cell proliferation, and epidemiologicalbased recommendations. Besides, other signs illuminate the role of microecological agents to adjunct the cancer treatment and counter the toxic side effects of cancer drugs. In addition, we will explore their role in chemotherapy, where these probiotics can be used as an adjunct to chemotherapy, counteracting the toxic side effects of chemotherapy drugs to minimize or optimize the therapeutic effect. In the treatment of cancer, we can see the role of prebiotics, probiotics, synbiotics, and their application in cancer patients, and the effectiveness effect can be considered as a clinical benefit. Practical applicationsA large number of studies have shown that microecologics including prebiotics, probiotics, and synbiotics play an important role in regulating intestinal microecology and contribute to the prevention and treatment of cancer, indicating that prebiotics, probiotics, and synbiotics have the potential to be used as microecological modulators in the adjuvant therapy of cancer. However, it is not clear what is the anti-tumor mechanism of these microecologics and how they antagonize the side effects of cancer chemotherapy and protect normal cells. This paper reviews the role of prebiotics, probiotics, and synbiotics in tumor suppression in maintaining the colon barrier, metabolism, immune regulation, and prevention of rapid growth of host cells, as well as their potential role in cancer chemotherapy. This review helps to better understand the relationship between prebiotics, probiotics, and synbiotics with immune regulation, intestinal microecology, metabolic regulation, and cell proliferation and provides strong evidence for their potential application as microecologics in cancer adjuvant therapy.
Based on factual scientific health claims, prebiotics has gained significant importance in ever-growing food and pharmaceutical industries. The diverse nature of distinct prebiotics influences the host differently in distinguishable patterns. Functional oligosaccharides are either plant-derived or commercially prepared. Raffinose, stachyose, and verbascose are three types of raffinose family oligosaccharides (RFOs) that have been extensively used as medicine, cosmetic, and food additives. These dietary fiber fractions avert the adhesion and colonization by enteric pathogens and add nutrition metabolites for a healthy immune system. Enrichment of RFOs in healthy foods should be promoted as these oligosaccharides augment gut microecology by enhancing the health conferring microbes i.e. Bifidobacteria and Lactobacilli. RFOs influence the host’s multiorgan systems due to their physiological and physicochemical properties. For example, the fermented microbial products of such carbohydrates affect neurological processes, including memory, mood, and behavior in humans. Raffinose-type sugar uptake is thought to be a ubiquitous property of Bifidobacteria. This review paper summarizes the source of RFOs and their metabolizing entities highlighting bifidobacterial carbohydrate utilization and health benefits.
Unpasteurized milk consumption is common throughout the globe, despite the negative consequence for consumer health. This review paper identified public health risks resulting from unpasteurized milk. Several keywords were used to search online, including Google Scholar, PubMed, Science Direct, and academic publications. Significant data were rigorously extracted and reported as per the PRISMA statement guideline. Individuals' risk from consuming raw milk was examined in 15 studies. According to a laboratory investigation report, raw milk contained several parasites and harmful bacteria in unpasteurized milk. These include campylobacteriosis, brucellosis, Staphylococcus aureus, streptococcus, salmonellosis, E. coli 0157, and other hazardous poisons like Aflatoxin M1. People are exposed to pathogenic microorganisms, parasites, and other dangerous toxic agents while consuming raw milk. Therefore, ensuring the safety and quality of raw milk through implementing hazard-critical control points during production and distribution is mandatory in the dairy industry to safeguard general public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.