In spite of numerous advantages on operating fermentation at elevated temperatures, very few thermophilic bacteria with polyhydroxyalkanoates (PHAs)-accumulating ability have yet been found in contrast to the tremendous mesophiles with the same ability. In this study, a thermophilic poly(3-hydroxybutyrate) (PHB)-accumulating bacteria (Chelatococcus daeguensis TAD1), isolated from the biofilm of a biotrickling filter used for NOx removal, was extensively investigated and compared to other PHB-accumulating bacteria. The results demonstrate that C. daeguensis TAD1 is a growth-associated PHB-accumulating bacterium without obvious nutrient limitation, which was capable of accumulating PHB up to 83.6 % of cell dry weight (CDW, w/w) within just 24 h at 45 °C from glucose. Surprisingly, the PHB production of C. daeguensis TAD1 exhibited strong tolerance to high heat stress as well as nitrogen loads compared to that of other PHB-accumulating bacterium, while the optimal PHB amount (3.44 ± 0.3 g l(-1)) occurred at 50 °C and C/N = 30 (molar) with glucose as the sole carbon source. In addition, C. daeguensis TAD1 could effectively utilize various cheap substrates (starch or glycerol) for PHB production without pre-hydrolyzed, particularly the glycerol, exhibiting the highest product yield (Y P/S, 0.26 g PHB per gram substrate used) as well as PHB content (80.4 % of CDW, w/w) compared to other carbon sources. Consequently, C. daeguensis TAD1 is a viable candidate for large-scale production of PHB via utilizing starch or glycerol as the raw materials.
A strain of bacteria CP1 with high nitrogen removal efficiency was newly isolated from the biofilm of a biofilter for removal of NO x from flue gas. The isolate was identified as Pseudomonas aeruginosa based on its physiological and biochemical characteristics and the results of 16S rRNA gene homology analysis. The new isolate had a high denitrifying ability, removing 98.49% of the nitrate in a 24-h period under aerobic conditions, with no nitrite accumulation. With regard to the nitrogen balance, the percentage of nitrogen lost in the flask culture was estimated to be 32.3%, which was presumed to be converted to nitrogen gas. An analysis of its denitrification activity showed that the optimal C/N and temperature were 12 and 30°C-40°C, respectively. By using glucose, sodium citrate and succinate, CP1 removed nitrate with high denitrification efficiency. The change in DO did not influence the effects of denitrification when it varied from 0 to 7.2 mg/L. The results show that CP1 could be a good candidate for the process of aerobic denitrification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.