The effects of surface passivation effect on electron mobility and crystal structure in Al0.3Ga0.7N/AlN/GaN heterostructures are investigated by classical Hall effect measurements and an X‐ray diffraction method. Al0.3Ga0.7N/AlN/GaN heterostructures with different doping and layer structures were grown by molecular beam epitaxy with or without growing an in situ SiN passivation layer. The classical Hall effect measurements were carried out as a function of temperature in the range between T = 1.82 K and 270 K at a fixed magnetic field in dark conditions. The effect of doping of the barrier layer and replacing an AlN inter‐layer between the AlGaN barrier and the GaN layer, where the two‐dimensional electron gas is populated, on mobility and sheet carrier concentration were also determined.
A normally-off β-Ga2O3 metal-oxide-semiconductor field-effect transistor (MOSFET) is proposed using a technology computer-aided design (TCAD) device simulation, which employs an epitaxial drift layer grown on an n-type low-doped body layer. The low-doped body layer under the MOS gate enabled normally-off operation, whereas the epitaxial drift layer determined the on-resistance and breakdown characteristics. The effects of the doping concentration of each layer and thickness of the drift channel layer on the device characteristics were investigated to design a device with a breakdown voltage of 1 kV. A threshold voltage of 1.5 V and a breakdown voltage of 1 kV were achieved by an n-type body layer with a doping concentration of 1 × 1015 cm−3 and an n-type drift layer with a doping concentration of 3 × 1017 cm−3, a thickness of 150 nm, and a gate-to-drain distance of 9.5 μm; resulting in an on-resistance of 25 mΩ·cm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.