SUMMARYInfluenza viruses, which had lost up to 99.999% infectivity by incubation with antibody (ix) specific for the haemagglutinin (HA) or with monoclon~1 u-HA, attached on to and penetrated chick embryo fibroblast (CEF) cells to the same extent as non-neutralized virus. Neutralized virus was also uncoated efficiently as shown by the accumulation of virion RNA in the nucleus-and virion envelope in the cytoplasm. Polyacrylamide gel electrophoresis of virion RNA segments recovered from the nucleus or cytoplasm of cells inoculated with neutralized or non-neutralized virus showed that antibody did not potentiate degradation of RNA. However, these RNAs were not expressed since virus-induced proteins were not detected in cells to which neutralized virus had been added. Assay of virion transcriptase of neutralized virus in vitro showed that its activity was reduced up to sevenfold compared with non-neutralized virus, and annealing studies showed that no detectable transcription took place in vivo with neutralized virus. These studies support the conclusion that antibody directed specifically against the HA protein on the outer surface of the influenza virus particle neutralizes infectivity by inactivating virion transcriptase activity and it is suggested that antibody to HA brings about allosteric rearrangements in the HA molecule which are transmitted across the virus envelope to the interior of the particle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.