In order to construct an RFLP map of barley, two populations were analyzed using 251 genomic and cDNA markers: one population comprised 71 F1 antherderived double haploid (DH) individuals of an intraspecific cross (IGRI x FRANKA), and the other 135 individuals of an interspecific F2/F3 progeny (VADA x H. spontaneum). The distribution of nonrepetitive clones over the seven barley chromosomes revealed a maximum for chromosome 2H and a minimum for 6H. The polymorphism of the interspecific progeny (76%) clearly exceeded that of the intraspecific progeny (26%) although, based on their pedigrees, IGRI and FRANKA are only distantly related. The contribution of individual chromosomes of the DH parents to the overall polymorphism varied between 8% and 50%. A significant portion (44% versus 10% of the interspecific progeny) of the markers mapped on the DH offspring showed distorted segregation, caused mainly by the prevalence of variants originating from the parent that better responded to in vitro culture (IGRI). In contrast to the interspecific map, probes displaying skewed segregation were clustered on the DH map on discrete segments. The colinear arrangement of both maps covers a distance of 1,453 cM and identifies regions of varying map distances.
Two hundred and fifty doubled haploid lines were studied from a cross between two 2-row winter barley varieties. The lines were evaluated for several characters in a field experiment for 3 years on two locations with two replications. From a total of 431 RFLP probes 50 were found to be polymorphic and subsequently used to construct a linkage map. Quantitative trait loci (QTLs) were determined and localized for resistance against Rhynchosporium secalis and Erysiphe graminis, for lodging, stalk breaking and ear breaking tendency, for the physical state before harvest, plant height, heading date, several kernel parameters and kernel yield. The heritability of the traits ranged from 0.56 to 0.89. For each trait except for kernel thickness, QTLs have been localized that explain 5-52% of the genetic variance. Transgressive segregation occurred for all of the traits studied.
Three new major, race-specific, resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) were identified in three barley lines, 'RS42-6*O', 'RS137-28*E', and 'HSY-78*A', derived from crosses with wild barley (Hordeum vulgare ssp. spontaneum). The resistance gene origining from wild barley in line 'RS42-6*O', showed a recessive mode of inheritance, whereas the other wild barley genes were (semi)-dominant. RFLP mapping of these three genes was performed in segregating F2 populations. The recessive gene in line 'RS42-6*O', was localized on barley chromosome 1S (7HS), while the (semi)-dominant genes in lines 'RS137-28*E', and 'HSY-78*A', were localized on chromosomes 1L (7HL) and 7L (5HL), respectively. Closely linked RFLP clones mapped at distances between 2.6cM and 5.3 cM. Hitherto, specific loci for powdery mildew resistance in barley had not been located on these chromosomes. Furthermore, tests for linkage to the unlocalized resistance gene Mlp revealed free segregation. Therefore, these genes represent new loci and new designations are suggested: mlt ('RS42-6*O'), Mlf ('RS137-28*E'), and Mlj ('HSY-78*A'). Comparisons with mapped QTLs for mildew resistance were made and are discussed in the context of homoeology among the genomes of barley (H-vulgare), wheat (Triticum aestivum), and rye (Secale cereale). Duplications of RFLP bands detected in the neighbourhood of Mlf and mlt might indicate an evolutionary interrelationship to the Mla locus for mildew resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.