This study was designed to develop a protocol for using a biologically-based system to detect and tract airborne herbicides. Common bean, lentil, and pea were selected for their quasi-diagnostic sensitivity to chlorsulfuron, thifensulfuron, metsulfuron, tribenuron, paraquat, glyphosate, bromoxynil, 2,4-D, and dicamba. Plants were grown in the greenhouse at Prosser, WA, and placed at 25 exposure sites at weekly intervals between Apr. 2 and Oct. 15, 1991. After 1 wk of field exposure plants were brought back and observed for herbicide symptoms over a 28-d period. Symptoms that developed were compared with symptoms caused by disease, insects, adverse weather conditions, and herbicides applied at different rates under controlled conditions on these species. In addition, if herbicide symptoms were observed, herbicide spray records and weather data in the area were used in a computer model to determine the source of potential herbicide drift. This study demonstrates that indicator plant species selected for high sensitivity to herbicides can be used to monitor the occurrence of herbicide movement.
The 3'-terminal nucleotide sequences of thirteen authenticated strains of bean common mosaic virus (BCMV) and one strain of bean common mosaic necrosis virus (BCMNV) were obtained. The regions sequenced included the coat protein coding sequence and 3'-end non-coding region. These data, combined with sequence information from other legume-infecting potyviruses and the Potyviridae were used for phylogenetic analysis. Evidence is provided for delineation of BCMNV as distinct from BCMV and the inclusion of azuki mosaic, dendrobium mosaic, blackeye cowpea mosaic, and peanut stripe viruses as strains of BCMV. This relationship defines the members of the BCMV and BCMNV subgroups. These data also provide a basis upon which to define virus strains, in combination with biological data. Other aspects and implications of legume-infecting potyvirus phylogenetics are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.