We report terahertz emission experiments on low-temperature-grown GaAs photoconductive antennae. Two field-screening effects determine the device response: space-charge screening on a long time scale and radiation field screening of the local electric field. This latter effect is the principal cause for saturation of terahertz emission observed when the emitters are driven hard with high-repetition-rate femtosecond laser pulses. We present an equivalent-circuit model consisting of three elements: a resistor with time-dependent conductance (photoswitch), a time-dependent voltage source (space-charge screening), and the antenna impedance (terahertz emission and radiation field screening). The simulations with this voltage divider reproduce the measured data well.
We report on a novel concept for THz photomixers with high conversion efficiency up to several THz. In contrast to the conventional pin photomixer we can overcome the trade-off between either optimizing transit-time or RC-roll-off. Using quasi-ballistic transport in nano-pin-diodes the transport path can be optimized regarding both path length and transit time. Independently, the capacitance can be kept small by using a sufficiently large number of optimized nano-pin-diodes in series. The concept is presented in detail and first experimental results are reported which corroborate our theoretical expectations.
Low-temperature-grown GaAs continues to be one of the most important materials of ultrafast optoelectronics. Little is known, however, about the recombination dynamics of photogenerated charge carriers under the influence of an applied electric field, and it has remained unclear to what extent biased photoswitches exhibit field screening effects. Here, the authors investigate the screening in biased few-micrometer-sized photoconductive gaps quantitatively and find that it can amount to tens of percent of the applied field. They find that a subgroup of the photogenerated carriers recombines on an unexpectedly long excitation-density-dependent time scale of nanoseconds to tens of nanoseconds.
We discuss the optoelectronic generation and detection of continuous-wave terahertz (THz) radiation by the mixing of visible/near-infrared laser radiation in photoconductive antennas. We review attempts to reach higher THz output-power levels by reverting from mobility-lifetime-limited photomixers to transit-time-limited p-i-n photodiodes. We then describe our implementation of a THz spectroscopy and imaging-measurement system and demonstrate its imaging performance with several examples. Possible application areas of THz imaging in the biomedical field and in surface characterization for industrial purposes are explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.