The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Sigma3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.
We report subpicosecond electro-optic measurements of the length of individual relativistic electron bunches. The longitudinal electron-bunch shape is encoded electro-optically on to the spectrum of a chirped laser pulse. The electron-bunch length is determined by analyzing individual laser-pulse spectra obtained with and without the presence of an electron bunch. Since the length of the chirped laser pulse can be easily changed, the electron bunch can be visualized on different time scales. This single-shot imaging technique is a promising method for real-time electron-bunch diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.