X-ray section topograph images of spherical strain centres in elastically isotropic crystals have been simulated using numerical solution of Takagi's equations. Variations in the image with the size of the deformation strain field, the defect position in the Borrmann fan and the crystal thickness have.. been investigated. Excellent agreement has been found between the simulated images and a wide variety of experimental images from hydrogen-induced strain centres in float-zone silicon.
The nucleation and propagation of misfit dislocations in Ge-Si strained epilayers on (100) Si have been investigated using transmission electron microscopy and X-ray diffraction topography at low lattice parameter mismatch (˜ 0.8%). Misfit dislocations nucleate as half loops which are predominantly unfaulted (> 90%) at the advancing growth interface. Under the driving force of the epilayer strain, unfaulted half loops glide and expand on inclined { 111 }planes toward the heterointerface (i.e. substrate/epilayer interface). These unfaulted half loops consist of a 60°-dislocation segment which lies along < 011> in a plane parallel to the heterointerface (i.e. (100)) and this segment is connected to the growth interface by two screw dislocation segments which both lie on the same inclined {111} glide plane. As 60° dislocations reach the heterointerface on each of the four inclined {111} variants, they form an orthogonal array of misfit dislocations which lie along [011] and [011]. At higher lattice parameter mismatch (˜ 2%), there appear to be some important changes in the dislocation behavior and these changes result in orthogonal arrays of heterointerface dislocations which are predominantly edge type (i.e. 90°dislocations).
An x-ray topography study is presented of the coherency breakdown in GexSi1−x/Si(100) strained epilayers. Finite dislocation densities (in excess of 103 cm−2) are observed at compositions in the range 12–13 at. % Ge for an epilayer thickness of h≊180 nm. Above 13 at. % Ge the dislocation density starts to change rapidly and this composition is identified as critical for h≊180 nm, a thickness which is almost a factor of 4 lower than the accepted ‘‘critical’’ thickness for this lattice mismatch. The result suggests that in low-mismatched GexSi1−x alloys the dislocation density will increase continuously at the ‘‘critical’’ thickness, as opposed to exhibiting a sharp onset. The implications of these results to the various models of the critical thickness transition are discussed.
The contrast of misfit dislocations in an InGaAs layer, close to the critical thickness and capped with GaAs grown by MBE on a (001) oriented GaAs substrate has been investigated by double axis synchrotron X-radiation topography. The layer thickness variation as a function of position has been measured to a precision of 1A by matching interference fringes observed in the 004 symmetric reflection double crystal rocking curves with simulations. The misfit dislocation density is highly anisotropic, varying from zero to a high value with increasing thickness. The contrast of the dislocations in the 004, 224 and 044 reflections has been examined in detail. All of the long dislocation segments characterized were 60° in character with ½<110> Burgers vectors inclined to the specimen surface. No dislocations were found which did not appear to be of this type. A surprising difference in contrast of the background in the 224 and 224 reflections is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.