A new micropower high power-supply-rejection (PSR) regulator, on the basis of op-amp-less architectural design, is presented in this paper. The proposed regulator is based on the embodiment of the Brokaw bandgap regulator circuit in an additional feedback control loop so as to achieve high efficiency in terms of referenced PSR bandwidth per current. The measured PSR performance without any filtering capacitor for a 50-k nominal resistive load at 1 kHz and 1 MHz are obtained as 76 and 43 dB, respectively. The regulator, making use of native driving devices to improve the headroom, supports the supply range from 2 to 3.3 V. The output voltage is close to 1.8 V, having an untrimmed temperature coefficient of 117 ppm C from 40 C to 125 C while drawing the quiescent current of only 5.65 A. The regulator occupies an area of 0.047 mm 2 using current source model 1.8 V/3.3 V CMOS 0.18 m triple-well process technology. The circuit is verified using the realistic BSIM3 models for simulation. Finally, the performance comparison with respect to the measured results of reported works, using technology normalized figure of merit, has validated that the proposed circuit technique offers good PSR results while having the advantages of low quiescent power, small size, and full integration without any off-chip capacitor. The proposed regulator is particularly suitable for micropower sensor circuits.Index Terms-Bandgap voltage regulator, low power, power supply rejection, voltage regulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.