The n-ZnO/p-Si heterojunction was fabricated by depositing high quality single crystalline aluminium-doped n-type ZnO film on p-type Si using the laser molecular beam epitaxy technique. The heterojunction exhibited a good rectifying behavior. The electrical properties of the heterojunction were investigated by means of temperature dependence current density—voltage measurements. The mechanism of the current transport was proposed based on the band structure of the heterojunction. When the applied bias V is lower than 0.15 V, the current follows the Ohmic behavior. When 0.15 V < V < 0.6 V, the transport property is dominated by diffusion or recombination in the junction space charge region, while at higher voltages (V > 0.6 V), the space charge limited effect becomes the main transport mechanism. The current—voltage characteristic under illumination was also investigated. The photovoltage and the short circuit current density of the heterojunction aproached 270 mV and 2.10 mA/cm2, respectively.
The initial growth conditions of a 100 nm thick GaN layer and Mg-surfactant on the quality of the GaN epilayer grown on a 6H-SiC substrate by metal-organic vapor phase epitaxy have been investigated in this research. Experimental results have shown that a high V/III ratio and the initially low growth rate of the GaN layer are favorable for two-dimension growth and surface morphology of GaN and the formation of a smoother growth surface. Mg-surfactant occurring during GaN growth can reduce the dislocations density of the GaN epilayer but increase the surface RMS, which are attributed to the change of growth mode.
To evaluate the influence of the ZnO buffer layer thickness on structural, electrical and optical properties of ZnO: Al (AZO)/ZnO bi-layer films, a series of AZO/ZnO films were deposited on the quartz substrates by electron beam evaporation. X-ray diffraction measurement shows that the crystal quality of the films is improved with the increase of the film thickness. The electrical properties results show that the resistivity decreases initial and then increases. However, optical transmittance of all the films is >80% regardless of the buffer layer thickness in the visible region. The results illustrate that the insertion of ZnO buffer layer can improve the film performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.