High burning rate composite propellants are achieved by incorporation of fine particles of oxidizer, transition metal oxides, and liquid ballistic modifiers. However, they pose processing problems, inertness to the composition and migration related issues. To overcome such problems, an attempt was made to incorporate ferrocenyl grafted HTPB as a burning rate modifier by partly replacing HTPB from 10 % to 50 % using TDI/ IPDI bicurative system and to study their processability in terms of viscosity, mechanical, thermal, sensitivity, and ballistic properties. The data on viscosity reveal that there is a marginal enhancement in end of mix viscosity as percentage of ferrocenyl grafted HTPB increases. The mechanical data reveal that tensile strength and elastic modulus increases, whereas percentage elongation decreases compared to base composition. The results on thermal properties infer that, as the percentage of ferrocenyl grafted HTPB increases, onset decomposition temperature decreases. The impact and friction sensitivity data also envisage that sensitivity increases in comparison to base composition. The data on ballistic properties revealed that there is ca. 53 % increase in burning rate, while decrease in “n” value from 0.39 to 0.2 was obtained compared to base composition.
ABSTRACT1,2-Dinitroxy propane-based liquid fuel is an advanced high energy fuel for torpedoes. The high energy fuel is used with an oxidiser, viz., hydroxyl ammonium perchlorate as a bi-propellant system for torpedo propulsion. Thermal stability of high energy fuel has been arrived at by differential thermal analysis and also by following the depletion in stabiliser content as well as increase in acidity with ageing. Rate constant for decomposition, activation energy for depletion of 2-nitro diphenylamine (2-NDPA) and shelf-life of high energy fuel have been determined. Due to the high vapour pressure of high energy fuel (because of 1,2-dinitroxy propane), usual experimental set up could not be used and the sample was conditioned in sealed tubes. The shelf-life of high energy fuel is arrived at using Woolwich, Berthelot and Arrhenius equations and the results obtained are 100 years, 125 years and 276 years, respectively. Considering the safety aspect, the lowest value, viz., 100 years is recommended as safe life of high energy fuel. This work confirms the reported estimates of the good storage stability of high energy fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.