is the most common oncogenic driver in lung adenocarcinoma (LUAC). We previously reported that (KL) or (KP) comutations define distinct subgroups of -mutant LUAC. Here, we examine the efficacy of PD-1 inhibitors in these subgroups. Objective response rates to PD-1 blockade differed significantly among KL (7.4%), KP (35.7%), and K-only (28.6%) subgroups ( < 0.001) in the Stand Up To Cancer (SU2C) cohort (174 patients) with -mutant LUAC and in patients treated with nivolumab in the CheckMate-057 phase III trial (0% vs. 57.1% vs. 18.2%; = 0.047). In the SU2C cohort, KL LUAC exhibited shorter progression-free ( < 0.001) and overall ( = 0.0015) survival compared with ; LUAC. Among 924 LUACs, alterations were the only marker significantly associated with PD-L1 negativity in TMB LUAC. The impact of alterations on clinical outcomes with PD-1/PD-L1 inhibitors extended to PD-L1-positive non-small cell lung cancer. In-mutant murine LUAC models, loss promoted PD-1/PD-L1 inhibitor resistance, suggesting a causal role. Our results identify alterations as a major driver of primary resistance to PD-1 blockade in -mutant LUAC. This work identifies alterations as the most prevalent genomic driver of primary resistance to PD-1 axis inhibitors in-mutant lung adenocarcinoma. Genomic profiling may enhance the predictive utility of PD-L1 expression and tumor mutation burden and facilitate establishment of personalized combination immunotherapy approaches for genomically defined LUAC subsets. .
IMPORTANCE Data sets linking comprehensive genomic profiling (CGP) to clinical outcomes may accelerate precision medicine.OBJECTIVE To assess whether a database that combines EHR-derived clinical data with CGP can identify and extend associations in non-small cell lung cancer (NSCLC).DESIGN, SETTING, AND PARTICIPANTS Clinical data from EHRs were linked with CGP results for 28 998 patients from 275 US oncology practices. Among 4064 patients with NSCLC, exploratory associations between tumor genomics and patient characteristics with clinical outcomes were conducted, with data obtained between January 1, 2011, and January 1, 2018.EXPOSURES Tumor CGP, including presence of a driver alteration (a pathogenic or likely pathogenic alteration in a gene shown to drive tumor growth); tumor mutation burden (TMB), defined as the number of mutations per megabase; and clinical characteristics gathered from EHRs. MAIN OUTCOMES AND MEASURESOverall survival (OS), time receiving therapy, maximal therapy response (as documented by the treating physician in the EHR), and clinical benefit rate (fraction of patients with stable disease, partial response, or complete response) to therapy. RESULTS Among 4064 patients with NSCLC (median age, 66.0 years; 51.9% female), 3183 (78.3%) had a history of smoking, 3153 (77.6%) had nonsquamous cancer, and 871 (21.4%) had an alteration in EGFR, ALK, or ROS1 (701 [17.2%] with EGFR, 128 [3.1%] with ALK, and 42 [1.0%] with ROS1 alterations). There were 1946 deaths in 7 years. For patients with a driver alteration, improved OS was observed among those treated with (n = 575) vs not treated with (n = 560) targeted therapies (median, 18.6 months [95% CI, 15.2-21.7] vs 11.4 months [95% CI, 9.7-12.5] from advanced diagnosis; P < .001). TMB (in mutations/Mb) was significantly higher among smokers vs nonsmokers (8.7 [IQR,] vs 2.6 [IQR, 1.7-5.2]; P < .001) and significantly lower among patients with vs without an alteration in EGFR (3.5 [IQR, 1.76-6.1] vs 7.8 [IQR, 3.5-13.9]; P < .001), ALK (2.1 [IQR, 0.9-4.0] vs 7.0 [IQR, 3.5-13.0]; P < .001), RET (4.6 [IQR,] vs 7.0 [IQR, 2.6-13.0]; P = .004), or ROS1 (4.0 [IQR, 1.2-9.6] vs 7.0 [IQR, 2.6-13.0]; P = .03). In patients treated with anti-PD-1/PD-L1 therapies (n = 1290, 31.7%), TMB of 20 or more was significantly associated with improved OS from therapy initiation (16.8 months [95% CI, 11.6-24.9] vs 8.5 months [95% CI, 7.6-9.7]; P < .001), longer time receiving therapy (7.8 months [95% CI, 5.5-11.1] vs 3.3 months [95% CI, 2.8-3.7]; P < .001), and increased clinical benefit rate (80.7% vs 56.7%; P < .001) vs TMB less than 20.CONCLUSIONS AND RELEVANCE Among patients with NSCLC included in a longitudinal database of clinical data linked to CGP results from routine care, exploratory analyses replicated previously described associations between clinical and genomic characteristics, between driver mutations and response to targeted therapy, and between TMB and response to immunotherapy. These findings demonstrate the feasibility of creating a clinicogenomic database der...
Neoantigen presentation arises as a result of tumor-specifi c mutations and is a critical component of immune surveillance that can be abrogated by somatic LOH of the human leukocyte antigen class I (HLA-I) locus. To understand the role of HLA-I LOH in oncogenesis and treatment, we utilized a pan-cancer genomic dataset of 83,644 patient samples, a small subset of which had treatment outcomes with immune checkpoint inhibitors (ICI). HLA-I LOH was common (17%) and unexpectedly had a nonlinear relationship with tumor mutational burden (TMB). HLA-I LOH was frequent at intermediate TMB, yet prevalence decreased above 30 mutations/megabase, suggesting highly mutated tumors require alternate immune evasion mechanisms. In ICI-treated patients with nonsquamous non-small cell lung cancer, HLA-I LOH was a signifi cant negative predictor of overall survival. Survival prediction improved when combined with TMB, suggesting TMB with HLA-I LOH may better identify patients likely to benefi t from ICIs. SIGnIFICAnCE:This work shows the pan-cancer landscape of HLA-I LOH, revealing an unexpected "Goldilocks" relationship between HLA-I LOH and TMB, and demonstrates HLA-I LOH as a signifi cant negative predictor of outcomes after ICI treatment. These data informed a combined predictor of outcomes after ICI and have implications for tumor vaccine development.
BackgroundNon-small cell lung cancer (NSCLC) patients bearing targetable oncogene alterations typically derive limited benefit from immune checkpoint blockade (ICB), which has been attributed to low tumor mutation burden (TMB) and/or PD-L1 levels. We investigated oncogene-specific differences in these markers and clinical outcome.MethodsThree cohorts of NSCLC patients with oncogene alterations (n=4189 total) were analyzed. Two clinical cohorts of advanced NSCLC patients treated with ICB monotherapy [MD Anderson (MDACC; n=172) and Flatiron Health-Foundation Medicine Clinico-Genomic Database (CGDB; n=894 patients)] were analyzed for clinical outcome. The FMI biomarker cohort (n=4017) was used to assess the association of oncogene alterations with TMB and PD-L1 expression.ResultsHigh PD-L1 expression (PD-L1 ≥50%) rate was 19%–20% in classic EGFR, EGFR exon 20 and HER2-mutant tumors, and 34%–55% in tumors with ALK, BRAF V600E, ROS1, RET, or MET alterations. Compared with KRAS-mutant tumors, BRAF non-V600E group had higher TMB (9.6 vs KRAS 7.8 mutations/Mb, p=0.003), while all other oncogene groups had lower TMB (p<0.001). In the two clinical cohorts treated with ICB, molecular groups with EGFR, HER2, ALK, ROS1, RET, or MET alterations had short progression-free survival (PFS; 1.8–3.7 months), while BRAF V600E group was associated with greater clinical benefit from ICB (CGDB cohort: PFS 9.8 months vs KRAS 3.7 months, HR 0.66, p=0.099; MDACC cohort: response rate 62% vs KRAS 24%; PFS 7.4 vs KRAS 2.8 months, HR 0.36, p=0.026). KRAS G12C and non-G12C subgroups had similar clinical benefit from ICB in both cohorts. In a multivariable analysis, BRAF V600E mutation (HR 0.58, p=0.041), PD-L1 expression (HR 0.57, p=0.022), and high TMB (HR 0.66, p<0.001) were associated with longer PFS.ConclusionsHigh TMB and PD-L1 expression are predictive for benefit from ICB treatment in oncogene-driven NSCLCs. NSCLC harboring BRAF mutations demonstrated superior benefit from ICB that may be attributed to higher TMB and higher PD-L1 expression in these tumors. Meanwhile EGFR and HER2 mutations and ALK, ROS1, RET, and MET fusions define NSCLC subsets with minimal benefit from ICB despite high PD-L1 expression in NSCLC harboring oncogene fusions. These findings indicate a TMB/PD-L1-independent impact on sensitivity to ICB for certain oncogene alterations.
IMPORTANCE Tumor mutational burden (TMB) is a potential biomarker associated with response to immune checkpoint inhibitor therapies. The prognostic value associated with TMB in the absence of immunotherapy is uncertain. OBJECTIVE To assess the prevalence of high TMB (TMB-H) and its association with overall survival (OS) among patients not treated with immunotherapy with the same 10 tumor types from the KEYNOTE-158 study. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study evaluated the prognostic value of TMB-H, assessed by Foundation Medicine (FMI) and defined as at least 10 mutations/ megabase (mut/Mb) in the absence of immunotherapy. Data were sourced from the deidentified Flatiron Health-FMI clinicogenomic database collected up to July 31, 2018. Eligible patients were aged 18 years or older with any of the following solid cancer types: anal, biliary, endometrial, cervical, vulvar, small cell lung, thyroid, salivary gland, mesothelioma, or neuroendocrine tumor. Patients with microsatellite instability-high tumors were excluded from primary analysis. For OS analysis, patients were excluded if immunotherapy started on the FMI report date or earlier or if patients died before January 1, 2012, and patients were censored if immunotherapy was started later than the FMI report date. Data were analyzed from November 2018 to February 2019. MAIN OUTCOMES AND MEASURES Overall survival was analyzed using the Kaplan-Meier method and Cox proportional hazards model, adjusting for age, sex, cancer types, practice type, and albumin level. RESULTS Of 2589 eligible patients, 1671 (64.5%) were women, and the mean (SD) age was 63.7 (11.7) years. Median (interquartile range) TMB was 2.6 (1.7-6.1) mut/Mb, and 332 patients (12.8%) had TMB-H (Ն10 mut/Mb). Prevalence of TMB-H was highest among patients with small cell lung cancer (40.0%; 95% CI, 34.7%-45.6%) and neuroendocrine tumor (29.3%; 95% CI, 22.8%-36.6%) and lowest was among patients with mesothelioma (1.2%; 95% CI, 0.3%-4.4%) and thyroid cancer (2.7%; 95% CI, 1.2%-5.7%). Adjusted hazard ratio for OS of patients not treated with immunotherapy with TMB-H vs those without TMB-H was 0.94 (95% CI, 0.77-1.13). Comparable results were observed when including patients with high microsatellite instability tumors and calculating OS from first observed antineoplastic treatment date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.