Background. Chronic kidney disease (CKD) related mineral bone disorders persist after kidney transplantation, but little is known about the relationship between fibroblast growth factor-23 (FGF-23) and mineral metabolism in prevalent post-transplant patients. Objectives. To examine mineral metabolism parameters and their relationship to FGF-23 and parathyroid hormone (PTH) in prevalent kidney transplant patients. Methods. Cross-sectional study of 106 kidney transplant patients enrolled November 2005–October 2009 at Tufts Medical Center (TMC), Boston. Results. The prevalence of hypophosphatemia was 34%, hypercalcemia 3%, and elevated PTH levels 66%, at a median (25th–75th percentile) duration of 12.8 (7.5–30.9) months post-transplant. Males had significantly higher levels of PTH (P = 0.04) and lower levels of serum phosphate (P = 0.002). Serum PTH levels did not relate to eGFR, corrected calcium levels or serum phosphate. FGF-23 levels were above the reference limits in 7% of patients; higher levels were associated with higher serum phosphate and PTH levels after adjustment for transplant kidney function. Conclusion. FGF-23 is an important driver of mineral metabolism in prevalent transplant patients. Its modulatory role in mineral metabolism homeostasis may be heightened as feedback suppression of PTH is disturbed. Its role in long term cardiovascular and graft outcomes needs further study.
Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life‐history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long‐term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk‐spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate.
The degree to which interspecific competition structures diverse communities is an oft-debated topic. An approach to answering this question is to examine spatial patterns of coexistence among putatively competing species. The degree to which interspecies competition predominates in a community can have important effects on our ability predict the response of that community to perturbations, most notably climate change, when shifting species’ ranges may result in novel species assemblages. We present a study on the avifauna of the Eastern Himalayas. We hypothesize that in a community where competitive interactions predominate, there will be a relationship between pairwise altitudinal overlaps and morphological differences between species. Moreover, we hypothesize that both morphological traits and altitudinal traits depart from a Brownian motion evolution model, resulting in species trait covariances having a phylogenetic component. We find a significant relationship between morphological dissimilarity and altitudinal overlaps of species pairs. We also find that closely related species are significantly more altitudinally stratified than a null model would predict. However, as more distantly related species pairs are included in the analysis, this pattern disappears, indicating that competitive interactions predominate only in closely related species. This is further suggested by the fact that altitudinal ranges themselves are phylogenetically overdispersed at the genus level, as are morphological traits. This effect disappears when the entire phylogeny is examined, with morphology and altitude being phylogenetically underdispersed. Model fitting suggests that individual clades have evolved towards local clade-specific fitness peaks, while within-clade results show evidence of niche partitioning. We interpret these results as a tension between competition on shorter time scales and selection on longer time scales, where competition forces closely-related species away from fitness peaks in order to allow for niche separation and hence coexistence, suggesting that this effect is partially responsible for the recent diversification of Eastern Himalayan avifauna.
Hawaiian stilts (Himantopus mexicanus knudseni) are an endangered subspecies of the Black‐necked stilt endemic to the Hawaiian Islands. Despite long‐term study, the main drivers of Hawaiian stilt population dynamics are poorly understood. We tested for density dependence using two sources of evidence: a 30‐year time series of annual estimated range‐wide abundance, and two 15+ year time series of reproductive success. Using separate methods with independent data, sources allowed us to make up for the potentially positive bias of one approach with the more conservative nature of the second. We compared nonlinear density‐dependent and density‐independent population model fits to our time‐series data, using both frequentist and Bayesian state‐space approaches. Across both approaches, density‐dependent models best fit observed population dynamics, with lower AICc and cross‐validation statistics compared to density‐independent models. Among density‐dependent models, a conditional model in which density‐independent dynamics occur below a population size threshold (~850–1,000 birds), and then density‐dependent dynamics occur above that threshold, performed best across Bayesian and frequentist model comparisons, with the Ricker model ranked next or equivalently. Our analysis of reproduction data revealed a strong negative effect of local adult density on nest success (proportion of nests hatching at least one chick) at Kealia National Wildlife Refuge on Maui, where few alternative breeding habitats are available, but no such effect at another site where many nearby alternative wetlands are available. These congruent results across independent datasets and analytical approaches support the hypothesis that Hawaiian stilts exhibit density dependence across their range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.