Recently, there has been a substantial increase in the availability and use of low-cost particulate matter sensors in a wide range of air quality applications. They carry the promise of revolutionising air quality monitoring, yet considerable reservations exist regarding their performance and capabilities, thus hindering the broader-scale utilization of these devices. In order to address these concerns and assess their feasibility and accuracy for various applications, we evaluated six low-cost PM 2.5 sensors (the Sharp GP2Y1010AU0F, Shinyei PPD42NS, Plantower PMS1003, Innociple PSM305, Nova SDS011 and Nova SDL607) in laboratory and field conditions using two combustion aerosols, concrete dust and ambient particles. In assessing the performance of these sensors, we focussed on indicators such as the linearity, accuracy and precision, critically differentiating between these qualities, and employed inter-comparison (the coefficient of determination, R 2 ). In the laboratory, all sensors responded well, with an R 2 > 0.91 when the PM 2.5 concentration was > 50 µg m -3 , as measured by the DustTrak. In particular, the PMS1003 demonstrated good accuracy and precision in both laboratory and ambient conditions. However, some limitations were noted for the tested sensors at lower concentrations. For example, the Sharp and Shinyei sensors showed poor correlations (R 2 < 0.1) with the DustTrak when the ambient PM 2.5 concentration was < 20 µg m -3 . These results suggest that the sensors should be calibrated individually for each source in the environment of their intended use. We demonstrate that when tested appropriately and used with a full understanding of their capabilities and limitations, low-cost sensors can serve as an unprecedented aid in a broad spectrum of air quality applications, including the emerging field of citizen science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.