Articles you may be interested in Circularly polarized terahertz radiation monolithically generated by cylindrical mesas of intrinsic Josephson junctions
A terahertz (THz) wave emitter using the stack of intrinsic Josephson junctions present in the high-Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212) has been developed. By applying a dc voltage V across the stack, the ac-Josephson effect converts this to an ac-current that emits photons at the Josephson frequency proportional to V. The Bi2212 device also behaves as and electromagnetic (EM) cavity, so depending upon the shape of the Bi2212 crystal, when the Josephson frequency matches that of a cavity resonance, the emission power is enhanced. However, the EM radiation characteristics also strongly depend upon the effects of Joule self heating of the device. In order to alleviate this Joule heating problem, we fabricated three distinct stand-alone Bi2212 sandwich device shapes, each crystal being first covered with Au on its top and bottom, and then sandwiched between sapphire plates. From our comparative studies of the three devices, we obtained important clues that could help to increase the emission power up to ∼mW and the frequency range up to several THz, as necessary for many applications such as security screening, high speed communications, medical and biological sensing, and astronomical detection, etc.
Joule heating is the central issue in order to develop high-power and high-performance terahertz (THz) emission from mesa devices employing the intrinsic Josephson junctions in a layered high transition-temperature Tc superconductor. Here, we describe a convenient local thermal measurement technique using charge-coupled-device-based thermoreflectance microscopy, with the highest spatial resolution to date. This technique clearly proves that the relative temperature changes of the mesa devices between different bias points on the current-voltage characteristics can be measured very sensitively. In addition, the heating characteristics on the surface of the mesa devices can be detected more directly without any special treatment of the mesa surface such as previous coatings with SiC micro-powders. The results shown here clearly indicate that the contact resistance strongly affects the formation of an inhomogeneous temperature distribution on the mesa structures. Since the temperature and sample dependencies of the Joule heating characteristics can be measured quickly, this simple thermal evaluation technique is a useful tool to check the quality of the electrical contacts, electrical wiring, and sample defects. Thus, this technique could help to reduce the heating problems and to improve the performance of superconducting THz emitter devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.