A replicon vaccine vector system was developed from an attenuated strain of Venezuelan equine encephalitis virus (VEE). The replicon RNA consists of the cis-acting 5' and 3' ends of the VEE genome, the complete nonstructural protein gene region, and the subgenomic 26S promoter. The genes encoding the VEE structural proteins were replaced with the influenza virus hemagglutinin (HA) or the Lassa virus nucleocapsid (N) gene, and upon transfection into eukaryotic cells by electroporation, these replicon RNAs directed the efficient, high-level synthesis of the HA or N proteins. For packaging of replicon RNAs into VEE replicon particles (VRP), the VEE capsid and glycoproteins were supplied in trans by expression from helper RNA(s) coelectroporated with the replicon. A number of different helper constructs, expressing the VEE structural proteins from a single or two separate helper RNAs, were derived from attenuated VEE strains Regeneration of infectious virus was not detected when replicons were packaged using a bipartite helper system encoding the VEE capsid protein and glycoproteins on two separate RNAs. Subcutaneous immunization of BALB/c mice with VRP expressing the influenza HA or Lassa virus N gene (HA-VRP or N-VRP, respectively) induced antibody responses to the expressed protein. After two inoculations of HA-VRP, complete protection against intranasal challenge with influenza was observed. Furthermore, sequential immunization of mice with two inoculations of N-VRP prior to two inoculations of HA-VRP induced an immune response to both HA and N equivalent to immunization with either VRP construct alone. Protection against influenza challenge was unaffected by previous N-VRP immunization. Therefore, the VEE replicon system was characterized by high-level expression of heterologous genes in cultured cells, little or no regeneration of plaque-forming virus particles, the capability for sequential immunization to multiple pathogens in the same host, and induction of protective immunity against a mucosal pathogen.
West Nile virus (WNV) antibodies were detected in horses from five Mexican states, and WNV was isolated from a Common Raven in the state of Tabasco. Phylogenetic studies indicate that this isolate, the first from Mexico, is related to strains from the central United States but has a relatively high degree of sequence divergence.
During the summer of 2003, an outbreak of human monkeypox occurred in the Midwest region of the United States. In all, 52 rodents suspected of being infected with monkeypox virus were collected from an exotic pet dealer and from private homes. The rodents were euthanized and submitted for testing to the United States Army Medical Research Institute of Infectious Diseases by the Galesburg Animal Disease Laboratory, Illinois Department of Agriculture. The rodent tissue samples were appropriately processed and then tested by using an integrated approach involving real-time polymerase chain reaction (PCR) assays, an antigen-detection immunoassay, and virus culture. We designed and extensively tested two specific real-time PCR assays for rapidly detecting monkeypox virus DNA using the Vaccinia virus F3L and N3R genes as targets. The assays were validated against panels of orthopox viral and miscellaneous bacterial DNAs. A pan-orthopox electrochemiluminescence (ECL) assay was used to further confirm the presence of Orthopoxvirus infection of the rodents. Seven of 12 (58%) animals (seven of 52 (15%) of all animals) tested positive in both monkeypoxspecific PCR assays and two additional pan-orthopox PCR assays (in at least one tissue). The ECL results showed varying degrees of agreement with PCR. One hamster and three gerbils were positive by both PCR and ECL for all tissues tested. In addition, we attempted to verify the presence of monkeypox virus by culture on multiple cell lines, by immunohistology, and by electron microscopy, with negative results. Sequencing the PCR products from the samples indicated 100% identity with monkeypox virus strain Zaire-96-I-16 (a human isolate from the Congo). These real-time PCR and ECL assays represent a significant addition to the battery of tests for the detection of various orthopoxviruses. In light of the recent monkeypox virus transmissions, early detection of the virus is crucial for both natural outbreaks and potential acts of bioterrorism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.