We demonstrate an on-chip optical phased array fabricated in a CMOS compatible process with continuous, fast (100 kHz), wide-angle (51°) beam-steering suitable for applications such as low-cost LIDAR systems. The device demonstrates the largest (51°) beam-steering and beam-spacing to date while providing the ability to steer continuously over the entire range. Continuous steering is enabled by a cascaded phase shifting architecture utilizing, low power and small footprint, thermo-optic phase shifters. We demonstrate these results in the telecom C-band, but the same design can easily be adjusted for any wavelength between 1.2 and 3.5 μm.
Silicon photonics has been heralded for a number of high technology fields, but access to a high quality technology has been limited to vertically integrated design/fabrication companies, or fabless companies with significant resources to engage high volume fabs. More recently, research and development hubs have developed and released process design kits and multi-project wafer programs to lower the barrier. We present the first silicon photonics multi-project wafer (MPW) service produced in a state-of-the-art 300 mm fabrication facility. The MPW service is enabled by a best-in-class process design kit (PDK) which allows designers to layout and obtain photonic integrated circuits (PICs) that work properly on the first run. The fabrication of these circuits is carried out at the SUNY Polytechnic Institute which operates a world class 300 mm cleanroom that, besides silicon photonics, develops sub-7 nm CMOS architectures. The industrial-level management of this facility and its equipment provides high quality photonic devices which are repeatable from run-to-run along with rapid turnaround time. The devices that are available to designers via the process design kit are produced by Analog Photonics and have been verified on actual runs. The performance of these devices is comparable to the state-of-the-art and enables a wide variety of silicon photonic applications. Index Terms-Photonic integrated circuits, silicon photonics, foundries. I. INTRODUCTION O VER the past twenty years the popularity of silicon photonic integrated circuits (PICs) has increased as their reported performance improves. This popularity is partially driven due to the potential cost benefits that silicon-based PICs possess over alternative material platforms (ie, III-V). Specifically, PICs fabricated using a silicon-based platform are able to take advantage of the unsurpassed infrastructure of silicon-based electronic Manuscript
We demonstrate monolithic 160-µm-diameter rare-earth-doped microring lasers using silicon-compatible methods. Pump light injection and laser output coupling are achieved via an integrated silicon nitride waveguide. We measure internal quality factors of up to 3.8 × 105 at 980 nm and 5.7 × 105 at 1550 nm in undoped microrings. In erbium- and ytterbium-doped microrings we observe single-mode 1.5-µm and 1.0-µm laser emission with slope efficiencies of 0.3 and 8.4%, respectively. Their small footprints, tens of microwatts output powers and sub-milliwatt thresholds introduce such rare-earth-doped microlasers as scalable light sources for silicon-based microphotonic devices and systems.
We report on integrated erbium-doped waveguide lasers designed for silicon photonic systems. The distributed Bragg reflector laser cavities consist of silicon nitride waveguide and grating features defined by wafer-scale immersion lithography and a top erbium-doped aluminum oxide layer deposited as the final step in the fabrication process. The resulting inverted ridge waveguide yields high optical intensity overlap with the active medium for both the 0.98 μm pump (89%) and 1.5 μm laser (87%) wavelengths with a pump-laser intensity overlap of >93%. We obtain output powers of up to 5 mW and show lasing at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536, 1561, and 1596 nm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.