Over the past two decades, centrifugal microfluidic systems have successfully demonstrated their capability for robust, high-performance liquid handling to enable modular, multi-purpose lab-on-a-chip platforms for a wide range of life-science applications. Beyond the handling of homogeneous liquids, the unique, rotationally controlled centrifugal actuation has proven to be specifically advantageous for performing cell and particle handling and assays. In this review we discuss technologies to implement two important steps for cell handling, namely separation and capturing/counting.
Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.