This paper describes the reversed-phase liquid chromatographic behaviour of the trypanocidal quaternary ammonium salt isometamidium chloride and its related compounds on a range of liquid chromatographic phases possessing alkyl and phenyl ligands on the same inert silica. In a parallel study with various extended polar selectivity phases which possessed different hydrophobic/silanophilic (hydrogen bonding) activity ratios, the chromatographic retention/selectivities of the quaternary ammonium salts was shown to be due to a co-operative mechanism between hydrophobic and silanophilic interactions. The highly aromatic and planar isometamidium compounds were found to be substantially retained on stationary phases containing aromatic functionality via strong π-π interactions. The chemometric approach of principal component analysis was used to characterise the chromatographic behaviour of the isometamidium compounds on the differing phases and to help identify the dominant retention mechanism(s). Two-dimensional (temperature/gradient) retention modelling was employed to develop and optimise a rapid liquid chromatography method for the separation of the six quaternary ammonium salts within 2.5 min which would be suitable for bioanalysis using liquid chromatography-mass spectrometry. This is the first reported systematic study of the relationship between stationary phase chemistries and retention/selectivity for a group of quaternary ammonium salts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.