Acute colonic pseudo-obstruction (Ogilvie's syndrome) can be defined as a clinical condition with symptoms, signs and radiological appearance of acute large bowel obstruction unrelated to any mechanical cause. Recent reports of the efficacy of cholinesterase inhibitors in relieving acute colonic pseudo-obstruction have fuelled interest in the pharmacological treatment of this condition. The aim of the present review is to outline current perspectives in the pharmacological treatment of patients with acute colonic pseudo-obstruction. The best documented pharmacological treatment of Ogilvie's syndrome is intravenous neostigmine (2-2.5 mg), which leads to quick decompression in a significant proportion of patients after a single infusion. However, the search for new colokinetic agents for the treatment of lower gut motor disorders has made available a number of drugs that may also be therapeutic options for Ogilvie's syndrome. Among these agents, the potential of 5-hydroxytryptamine-4 receptor agonists and motilin receptor agonists is discussed.
Adding organic acids to piglet diets is known to be helpful in overcoming postweaning syndrome, and butyric acid is known to be the main energy source for the epithelial cells of the large intestine and the terminal ileum. This study investigated the effect of sodium butyrate (SB) on in vitro and in vivo swine microflora, piglet growth performance, and intestinal wall morphology. During a 24-h in vitro cecal fermentation, total gas production and maximal rate of gas production were reduced linearly by SB (P < 0.001). Ammonia in cecal liquor was increased linearly by SB after 4, 8, and 24 h of fermentation (P < 0.001). In the in vivo study, 48 piglets housed in individual crates were allotted to 4 treatment groups (12 animals per treatment) for 6 wk. Piglets received a basal diet with a) no addition (control), or with SB at b) 1,000 ppm, c) 2,000 ppm, or d) 4,000 ppm. After 6 wk, 6 animals per treatment were killed, and samples of intestinal content and mucosa were collected. Sodium butyrate did not improve the animal growth performance. In the cecum, SB increased pH and isobutyric acid concentration (linear, P < 0.05) and tended to increase ammonia concentration (P = 0.056). Intestinal counts of clostridia, enterobacteriaceae, and lactic acid bacteria as well as intestinal mucosal morphology were not affected by feeding SB. This study showed that SB influenced the cecal microflora in an in vitro system, reducing the total gas production but increasing ammonia concentrations. When fed to piglets, SB did not improve the animal growth performance, increased cecal pH, and tended to increase cecal ammonia concentrations. Further studies will be needed to better understand the mechanisms underlying the effects observed when SB is fed to piglets.
Beet and cane molasses are produced worldwide as a by-product of sugar extraction and are widely used in animal nutrition. Due to their composition, they are fed to ruminants as an energy source. However, molasses has not been properly characterized in the literature; its description has been limited to the type (sugarcane or beet) or to the amount of dry matter (DM), total or water-soluble sugars, crude protein, and ash. Our objective was to better characterize the composition of cane and beet molasses, examine possible differences, and obtain a proper definition of such feeds. For this purpose, 16 cane and 16 beet molasses samples were sourced worldwide and analyzed for chemical composition. The chemical analysis used in this trial characterized 97.4 and 98.3% of the compounds in the DM of cane and beet molasses, respectively. Cane molasses contained less DM compared with beet molasses (76.8 ± 1.02 vs. 78.3 ± 1.61%) as well as crude protein content (6.7 ± 1.8 vs. 13.5 ± 1.4% of DM), with a minimum value of 2.2% of DM in cane molasses and a maximum of 15.6% of DM in beet molasses. The amount of sucrose differed between beet and cane molasses (60.9 ± 4.4 vs. 48.8 ± 6.4% of DM), but variability was high even within cane molasses (39.2-67.3% of DM) and beet molasses. Glucose and fructose were detected in cane molasses (5.3 ± 2.7 and 8.1 ± 2.8% of DM, respectively), showing high variability. Organic acid composition differed as well. Lactic acid was more concentrated in cane molasses than in beet molasses (6.1 ± 2.8 vs. 4.5 ± 1.8% of DM), varying from 1.6 to 12.8% of DM in cane molasses. Dietary cation-anion difference showed numerical differences among cane and beet molasses (7 ± 53 vs. 66 ± 45 mEq/100 g of DM, on average). It varied from −76 to +155 mEq/100 g of DM in the cane group and from +0 to +162 mEq/100 g of DM in the beet group. Data obtained in this study detailed differences in composition between sources of molasses and suggested that a more complete characterization could improve the use of molasses in ration formulation.
The purpose of the present work was to evaluate whether the addition of sodium butyrate to feed could facilitate weaning and growth response in piglets. For 56 days two groups of 20 piglets (9.2±1.4 kg LW) were fed an acidified basal diet (containing formic and lactic acid at 0.5 and 1.5 g/kg of feed, respectively) without (control group) or with sodium butyrate (SB) at 0.8 g/kg. Average daily gain (ADG), daily feed intake (DFI), feed efficiency (FE) and live weight (LW) were recorded. In the first two weeks, butyrate supplementation increased ADG (+20%; P<0.05) and DFI (+16%; P<0.05). During the subsequent period (15 to 35 days) animals fed SB had a higher DFI but lower feed efficiency (+10% and -14%, respectively; P<0.05) than animals fed the control diet. No other benefits were observed thereafter. The data presented showed that the use of sodium butyrate facilitated only the initial phase of adaptation to a solid diet in piglets.
Gluconic acid (GA) derives from the incomplete oxidation of glucose by some Gluconobacter strains. When fed to nonruminant animals, GA is only poorly absorbed in the small intestine and is primarly fermented to butyric acid in the lower gut. This study investigated the effect of GA on in vitro growth response and metabolism of swine cecal microflora and on animal growth performance, intestinal wall morphology, and intestinal microflora. During a 24-h in vitro cecal fermentation, total gas production and maximum rate of gas production were increased by GA (linear, P < 0.001). Ammonia in cecal liquor was reduced by GA after 4, 8, and 24 h of fermentation (quadratic, P < 0.01). After 24 h of fermentation, total short-chain fatty acids, acetic acid, propionic acid, n-butyric acid, acetic to propionic acid ratio, and acetic + butyric to propionic acid ratio were linearly increased by GA (P < 0.001). In the in vivo study, 48 piglets were divided into 4 groups and housed in individual cages for 6 wk. Piglets received a basal diet with a) no addition (control) or with GA addition at b) 3,000 ppm, c) 6,000 ppm, or d) 12,000 ppm. After 6 wk, 4 animals per treatment were killed, and samples of intestinal content and mucosa were collected. Compared with control, GA tended to increase average daily gain (+13 and +14% for GA at 3,000 and 6,000 ppm, respectively; P of the model = 0.11; quadratic, P < 0.05). Daily feed consumption and gain to feed ratio were not influenced by GA. Intestinal counts of clostridia, enterobacteriaceae, and lactic acid bacteria were not affected by GA. Gluconic acid tended to increase total short-chain fatty acids in the jejunum (+174, +87, and +74% for GA at 3,000, 6,000, and 12,000 ppm, respectively; P of the model = 0.07; quadratic, P = 0.07). Morphological evaluation of intestinal mucosa from jejunum, ileum, and cecum did not show any significant differences among treatments. This study showed that feeding GA influences the composition and activity of the intestinal microflora and may improve growth performance of piglets after weaning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.