In the WHO European Region, COVID-19 surveillance was implemented 27 January 2020. We detail the first European cases. As at 21 February, nine European countries reported 47 cases. Among 38 cases studied, 21 were linked to two clusters in Germany and France, 14 were infected in China. Median case age was 42 years; 25 were male. Late detection of the clusters’ index cases delayed isolation of further local cases. As at 5 March, there were 4,250 cases.
SummaryBackgroundTraditional methods for molecular epidemiology of Neisseria gonorrhoeae are suboptimal. Whole-genome sequencing (WGS) offers ideal resolution to describe population dynamics and to predict and infer transmission of antimicrobial resistance, and can enhance infection control through linkage with epidemiological data. We used WGS, in conjunction with linked epidemiological and phenotypic data, to describe the gonococcal population in 20 European countries. We aimed to detail changes in phenotypic antimicrobial resistance levels (and the reasons for these changes) and strain distribution (with a focus on antimicrobial resistance strains in risk groups), and to predict antimicrobial resistance from WGS data.MethodsWe carried out an observational study, in which we sequenced isolates taken from patients with gonorrhoea from the European Gonococcal Antimicrobial Surveillance Programme in 20 countries from September to November, 2013. We also developed a web platform that we used for automated antimicrobial resistance prediction, molecular typing (N gonorrhoeae multi-antigen sequence typing [NG-MAST] and multilocus sequence typing), and phylogenetic clustering in conjunction with epidemiological and phenotypic data.FindingsThe multidrug-resistant NG-MAST genogroup G1407 was predominant and accounted for the most cephalosporin resistance, but the prevalence of this genogroup decreased from 248 (23%) of 1066 isolates in a previous study from 2009–10 to 174 (17%) of 1054 isolates in this survey in 2013. This genogroup previously showed an association with men who have sex with men, but changed to an association with heterosexual people (odds ratio=4·29). WGS provided substantially improved resolution and accuracy over NG-MAST and multilocus sequence typing, predicted antimicrobial resistance relatively well, and identified discrepant isolates, mixed infections or contaminants, and multidrug-resistant clades linked to risk groups.InterpretationTo our knowledge, we provide the first use of joint analysis of WGS and epidemiological data in an international programme for regional surveillance of sexually transmitted infections. WGS provided enhanced understanding of the distribution of antimicrobial resistance clones, including replacement with clones that were more susceptible to antimicrobials, in several risk groups nationally and regionally. We provide a framework for genomic surveillance of gonococci through standardised sampling, use of WGS, and a shared information architecture for interpretation and dissemination by use of open access software.FundingThe European Centre for Disease Prevention and Control, The Centre for Genomic Pathogen Surveillance, Örebro University Hospital, and Wellcome.
Up to 27 May 2022, Portugal has detected 96 confirmed cases of monkeypox. We describe 27 confirmed cases (median age: 33 years (range: 22–51); all males), with an earliest symptom onset date of 29 April. Almost all cases (n = 25) live in the Lisbon and Tagus Valley health region. Most cases were neither part of identified transmission chains, nor linked to travel or had contact with symptomatic persons or with animals, suggesting the possible previously undetected spread of monkeypox.
We compared 19,207 cases of SARS-CoV-2 variant B.1.1.7/S gene target failure (SGTF), 436 B.1.351 and 352 P.1 to non-variant cases reported by seven European countries. COVID-19 cases with these variants had significantly higher adjusted odds ratios for hospitalisation (B.1.1.7/SGTF: 1.7, 95% confidence interval (CI): 1.0–2.9; B.1.351: 3.6, 95% CI: 2.1–6.2; P.1: 2.6, 95% CI: 1.4–4.8) and B.1.1.7/SGTF and P.1 cases also for intensive care admission (B.1.1.7/SGTF: 2.3, 95% CI: 1.4–3.5; P.1: 2.2, 95% CI: 1.7–2.8).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.