Fungi of the genus Diaporthe have been reported as the main causative agent of hazelnut defects in the Caucasus area. This study aimed to define which fungal species are present in defective hazelnuts grown in Turkey and confirm the role of Diaporthe spp. Seven hazelnut orchards were selected, with each one located in a different Turkish Province (Düzce, Giresun, Ordu, Samsun, Sakarya, Trabzon, and Zonguldak), and hazelnuts were collected at early and full ripening. Fungal isolation and identification were performed at the genus level based on morphological characteristics. Several genera were isolated, with Diaporthe spp. being among the prevalent. This was the only genus with increasing incidence from early to full ripening, and incidence at full ripening was positively correlated both with internal (ρ = 0.86) and visible defects (ρ = 0.81), which confirmed its role as the key causative agent of hazelnut defects. The correlation of defect occurrence with rainfall, reported in previous study, was not confirmed, possibly due to the low defect incidence. A total of 86 Diaporthe monosporic strains isolated from Turkish hazelnut samples, together with 33 strains collected in the Caucasus region and 6 from Italy, were analyzed with a multi-locus phylogeny based on three genomic loci (ITS, EF1-α, and tub). The results showed that Diaporthe strains can be grouped into 7 distinct clades, with a majority of Turkish strains (95%) being placed into a single clade related with D. eres. These samples were organized into several sub-clades, which indicates the existence of genetically diverse sub-populations.
Fusarium proliferatum has been reported as the main causal agent of garlic dry rot during the postharvest stage, but information on this fungus during the crop growth stage is lacking. We focused on the cropping season of garlic (Allium sativum L.) in the field, until its harvest, with the aim of clarifying the role of F. proliferatum in bulb infection as well as the impact of crop growing conditions on pathogen-plant interaction. Studies were conducted in Piacenza (northern Italy) for three seasons from 2016 to 2019. Six garlic farms were sampled. A different field was sampled every year. Soil samples were recovered at sowing time for the counting of fungal colony forming units (CFU). Plant samples were collected at three growth stages, from BBCH 15 (fifth leaf visible) to BBCH 49 (ripening), for which disease severity assessment and fungi isolations were performed. Fusarium was the most frequently isolated genus, of which F. proliferatum and F. oxysporum were the dominant species. F. proliferatum registered the highest incidence in all the farms tested, but F. oxysporum was dominant in the first year of the study. F. oxysporum incidence was correlated with dry weather, whereas F. proliferatum was correlated with rainy weather. In conclusion, our result confirms the association of F. proliferatum with garlic bulbs from the crop’s early growth stages, suggesting potential seed transmission as a source of this fungal pathogen. Further studies should investigate the link between fusaria occurrence in the field and dry rot outbreaks occurring postharvest and during storage of garlic.
Diaporthe eres has been recently reported as the causal agent of hazelnut defects, with characteristic brown spots on the kernels surface and internal fruit discoloration. Knowledge regarding the ecology of this fungus is poor but, is critical to support a rationale and effective hazelnut crop protection strategy. Therefore, a study was performed to describe and model the effect of different abiotic factors such as temperature (T, 5–35°C, step 5°C) and water activity (aw 0.83–0.99, step 0.03) regimes on D. eres mycelial growth, pycnidial conidiomata development and asexual spore production during a 60-day incubation period. Alpha conidia germination was tested in the same T range and at different relative humidities (RH = 94, 97 and 100%) over 48 h incubation period. Fungal growth was observed from the first visual observation; regarding pycnidia and cirrhi, their development started after 8 and 19 days of incubation, respectively and increased over time. The optimum T for growth was 20–25°C and for pycnidia and cirrhi development was 30°C; aw ≥ 0.98 was optimal for the tested steps of the fungal cycle. The best condition for conidial germination of D. eres was at 25°C with RH = 100%. Quantitative data obtained were fitted using non- linear regression functions (Bete, logistic and polynomial), which provided a very good fit of the biological process (R2 = 0.793–0.987). These functions could be the basis for the development of a predictive model for the infection of D. eres of hazelnuts.
The aim of the study was to test in vitro and in vivo the efficacy of triazoles and biocontrol agents (BCAs) against Fusarium proliferatum and F. oxysporum, the former signaled as the main causal agent of garlic dry rot and the latter also involved. In vitro trials were organized using potato dextrose agar with added chemicals or BCAs inoculated with selected F. proliferatum and F. oxysporum. Garlic cloves were dipped before sowing in suspensions prepared with the fungicides showing the best performances in vitro; then they were dipped in Fusaria suspension before sowing. In in vitro trials, the maximum Fusaria growth inhibition was performed by Propiconazole + Prochloraz (100%), followed by Tebuconazole (88.9%). BCAs showed great capacity to control Fusaria, with a maximum growth inhibition of 80% (Trichoderma harzianum + T. gamsii). In vivo bacterial BCAs showed a similar capacity to control F. proliferatum and F. oxysporum compared to chemical products (mean of severity index 18.6% and 11.7%, respectively). In vivo results confirmed the in vitro performances, except for Trichoderma, which had the worst performances in vivo. Therefore, the results are preliminary but promising for future field application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.