Background and Objectives: Brain Tumor Fusion-based Segments and Classification-Non-enhancing tumor (BTFSC-Net) is a hybrid system for classifying brain tumors that combine medical image fusion, segmentation, feature extraction, and classification procedures. Materials and Methods: to reduce noise from medical images, the hybrid probabilistic wiener filter (HPWF) is first applied as a preprocessing step. Then, to combine robust edge analysis (REA) properties in magnetic resonance imaging (MRI) and computed tomography (CT) medical images, a fusion network based on deep learning convolutional neural networks (DLCNN) is developed. Here, the brain images’ slopes and borders are detected using REA. To separate the sick region from the color image, adaptive fuzzy c-means integrated k-means (HFCMIK) clustering is then implemented. To extract hybrid features from the fused image, low-level features based on the redundant discrete wavelet transform (RDWT), empirical color features, and texture characteristics based on the gray-level cooccurrence matrix (GLCM) are also used. Finally, to distinguish between benign and malignant tumors, a deep learning probabilistic neural network (DLPNN) is deployed. Results: according to the findings, the suggested BTFSC-Net model performed better than more traditional preprocessing, fusion, segmentation, and classification techniques. Additionally, 99.21% segmentation accuracy and 99.46% classification accuracy were reached using the proposed BTFSC-Net model. Conclusions: earlier approaches have not performed as well as our presented method for image fusion, segmentation, feature extraction, classification operations, and brain tumor classification. These results illustrate that the designed approach performed more effectively in terms of enhanced quantitative evaluation with better accuracy as well as visual performance.
Mesothelioma is a form of cancer that is aggressive and fatal. It is a thin layer of tissue that covers the majority of the patient’s internal organs. The treatments are available; however, a cure is not attainable for the majority of patients. So, a lot of research is being done on detection of mesothelioma cancer using various different approaches; but this paper focuses on optimization techniques for optimizing the biomedical images to detect the cancer. With the restricted number of samples in the medical field, a Relief-PSO head and mesothelioma neck cancer pathological image feature selection approach is proposed. The approach reduces multilevel dimensionality. To begin, the relief technique picks different feature weights depending on the relationship between features and categories. Second, the hybrid binary particle swarm optimization (HBPSO) is suggested to automatically determine the optimum feature subset for candidate feature subsets. The technique outperforms seven other feature selection algorithms in terms of morphological feature screening, dimensionality reduction, and classification performance.
The term heart-related disease is stated as the range of condition that impacts an individual heart negatively. In the current scenario, cardiovascular diseases are causing more deaths when compared with other ailments, it has been estimated that there are nearly 18 million deaths annually as per the recent report released by World Health Organization (WHO). It has been stated that unhealthy habits and other related aspects adopted by individuals are considered as the primary reasons for an increase in the risk of heart diseases. High cholesterol, eating more junk foods, hypertension, etc., created the issue related to heart diseases. Hence, addressing food quality and suggesting better eating habits enable individuals to enhance their living and support better health. The application of new technologies like machine learning, deep learning, and other models support doctors, nurses, and radiologists to predict heart disease effectively. Studies have stated that the various models are used mainly for the classification and forecasting of the diagnosis of heart-related diseases. The researchers have identified that critical algorithms like CART support the predictability of the disease by 93.3% whereas the conventional models possess vert less specificity. Furthermore, deep neural networks can be applied for analyzing and detecting heart failures effectively and supporting medical practitioners in making better and more critical clinical decisions making. The researchers focus on using a descriptive research study for performing the study; moreover, the researcher collates the data using the questionnaire method, which enables sourcing the critical information from the medical practitioners and supports in making critical data analysis effectively. The researchers also use secondary data modes for sourcing the information related to past studies on the related topic. The researchers use the frequency analysis, correlation analysis, and structural equation model analysis for performing the study, and the results are stated in detail in the respective sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.