CMOS single-photon avalanche diodes (SPADs) have recently become an emerging imaging technology for applications requiring high sensitivity and high frame-rate in the visible and near-infrared range. However, a higher photon detection efficiency (PDE), particularly in the 700-950 nm range, is highly desirable for many growing markets, such as eye-safe three-dimensional imaging (LIDAR). In this paper, we report the design and characterization of SPADs fabricated in a 0.16 µm BCD (Bipolar-CMOS-DMOS) technology. The overall detection performance is among the best reported in the literature: 1) PDE of 60% at 500 nm wavelength and still 12% at 800 nm; 2) very low dark count rate of < 0.2 cps/µm 2 (in counts per second per unit area); 3) < 1% afterpulsing probability with 50 ns dead-time; and 4) temporal response with 30 ps full width at half-maximum and less than 50 ps diffusion tail time constant.
According to recent literature, this paper highlights the relevance of spatial mobility as an explanatory factor of the individual risk of job-education mismatch. To investigate this causal link we use individual information about daily home-to-work commuting time and choices to relocate in a different local area to get a job. Our model takes into account relevant local labour markets features. We control for selective access to employment and test for endogeneity of spatial mobility. Results show a negative impact of commuting time on educational mismatch for upper-secondary graduates, as well as a negative impact of migration/migration distance for university graduates
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.