An overview of the state of art in ferroelectric thin films is presented. First, we review applications: microsystems' applications, applications in high frequency electronics, and memories based on ferroelectric materials. The second section deals with materials, structure ͑domains, in particular͒, and size effects. Properties of thin films that are important for applications are then addressed: polarization reversal and properties related to the reliability of ferroelectric memories, piezoelectric nonlinearity of ferroelectric films which is relevant to microsystems' applications, and permittivity and loss in ferroelectric films-important in all applications and essential in high frequency devices. In the context of properties we also discuss nanoscale probing of ferroelectrics. Finally, we comment on two important emerging topics: multiferroic materials and ferroelectric one-dimensional nanostructures.
Pt/Ti/SiO2/Si structures have been studied to investigate the structural, chemical, and microstructural changes that occur during annealing. Grain growth of the as-deposited Pt columns was observed after annealing at 650 °C, and extensive changes in the Pt microstructure were apparent following a 750 °C anneal for 20 min. In addition, two types of defects were identified on the surfaces of annealed substrates. Defect formation was retarded when the surface was covered with a ferroelectric film. Concurrent with the annealing-induced Pt microstructure changes, Ti from the adhesion layer between the Pt and the SiO2 migrated into the Pt layer and oxidized. It was shown with spectroscopic ellipsometry and Auger electron spectroscopy that for long annealing times, the titanium oxide layer can reach the Pt surface. Consequently, at the processing temperatures utilized in preparing many ferroelectric thin films, the substrate is not completely inert or immobile. The changes associated with Ti migration could be especially problematic in techniques that require the substrate to be heated prior to film deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.