The phthalates comprise a family of phthalic acid esters that are used primarily as plasticizers in polymeric materials to impart flexibility during the manufacturing process and to the end product. It is estimated that the annual worldwide production of phthalate esters exceeds five million tons. Plasticizers are one of the most prominent classes of chemicals, but unfortunately, they possess endocrine-disrupting chemical properties. As endocrine-disrupting chemicals, plasticizers have produced adverse developmental and reproductive effects in mammalian animal models.Phthalates are easily transported into the environment during manufacture, disposal,and leaching from plastic materials, because they are not covalently bound to the plastics of which they are a component. Because of their fugitive nature and widespread use, the phthalates are commonly detected in air, water, sediment/soil, and biota, including human tissue. Large amounts of phthalic acid esters are often leached from the plastics that are dumped at municipal landfills.Phthalate esters undergo chemical changes when released into the environment.The primary processes by which they are transformed include hydrolysis, photolysis,and biodegradation. It is noteworthy that all of these degradation processes are greatly influenced by the local physical and chemical conditions. Hence, in the present review, we have sought to ascertain from the literature how the phthalate esters undergo transformation when they are released into lower landfill layers.Within the upper landfill layers, biodegradation prevails as the major degradation mechanism by which the phthalates are dissipated. Generally, biodegradation pathways for the phthalates consist of primary biodegradation from phthalate diesters to phthalate monoesters, then to phthalic acid, and ultimately biodegradation of phthalic acid to form C02 and/or CH4• We have noted that the phthalate esters are also degraded through abiotic means,which proceeds via both hydrolysis and photolysis. Photodegradation generally involves reactions of the phthalates in the atmosphere with hydroxyl radicals. The hydrolysis of phthalate diesters produces the corresponding monoesters, which are subsequently converted to phthalic acid. Phthalic acid has been observed to accumulate within landfill zones where phthalate contamination exists.Hydrolysis is usually not an important fate process for phthalate esters in the environment, including in upper landfill layers. However, the conditions prevalent at lower landfill layers are generally suitable for phthalate transformation via hydrolysis.The conditions in this zone include high temperatures and pressures, presence of chemical catalysts, as well as wide pH fluctuations. Such conditions foster hydrolysis that may be either acid- or base-catalyzed by metal ions, anions, or organic materials catalysts. In addition, research indicates that the propensity for ongoing hydrolysis increases as landfill depth increases.We can be emphatic in asserting that hydrolysis of phthalate esters in...
Microcystis was cultured under standard conditions in BG-11 and M-11 media. Using results of an analysis of RNA and total organic carbon (TOC) content, a significant logarithmic relationship between Microcystis growth rate and the RNA/TOC ratio was described to measure the growth rate. Colonial Microcystis samples collected in a shallow, hypertrophic lake (Lake Taihu, China) during May to November 2012 were divided into six size classes (<75, 75-100, 100-150, 150-300, 300-500, and >500 μm), and the RNA/TOC ratio of each class was analyzed to evaluate differences in growth. The growth rate of colonies in the 150-300 μm size class was highest from May to August, but the growth rate increased along with the increase in colony size from September to November. Our results also indicated that water temperature did not change the relationship between growth rate and colony size, but the growth rate of larger colonies was higher than the growth rate of smaller colonies at conditions of low total nitrogen, low total dissolved phosphorus concentration, and high light intensity. Taken together, these results suggest that large colonial Microcystis possess an advantage that is a consequence of this faster growth at lower nutrient concentrations and high light intensities.
Groundwater resources continue to be an important source of water supply for communities in developing countries. However, rapid population growth and urbanization, challenges the potential of groundwater to serve and meet the needs of growing populace. Various techniques have been developed over the last decade to assess groundwater vulnerability due
L-leucine products among other branched chain amino acid supplements are highly susceptible to economically motivated adulteration. Curbing this menace is critical and timely. Hence, the δ(15) N composition of the L-leucine derived from plants and animals sources was estimated. The trophic enrichment phenomenon of δ(15) N composition was utilized to elucidate the sources. We finally established the distinction between the respective sources. Samples of plant sources (maize and soybean) and that of animal sources (pig fur and duck feather) were analyzed for δ(15) N isotopic signatures. An elemental analyzer which was connected to an isotope ratio mass spectrometer operated in the continuous flow mode was utilized. The raw materials were obtained from China. Statistical analysis was performed using descriptive statistics and one-way analysis of variance. The results indicated lower δ(15) N values of range -0.7344‰ to 2.384‰ and 1.032‰ to 2.064‰ for maize and soybean samples, respectively. Whereas, a range of 3.860‰ to 6.011‰ and 5.875‰ to 6.011‰ was, respectively, detected in pig fur and duck feather samples. The δ(15) N difference in plants and animals samples was significant (F = 165.0; P = 1.675 E-10 for maize and pig fur samples; F = 212.8; P = 0.0001284 for soybean and duck feather samples). It was observed that δ(15) N trophic enrichment is helpful in elucidating the respective sources. The authors can emphatically assert that the range of δ(15) N composition of L-leucine derived from plants sources within the study area is -1.000‰ to 3.000‰ whereas the range in animal sources is 4.000‰ to 9.000‰. Practical Application This study provides a reliable approach in verifying the authenticity of not only L-leucine products but also other branched chain amino acid supplements and thereby would help in fraud detection of any economically motivated adulteration and mislabeling of these products. When coupled with H and O stable isotope techniques, the region-of-origin of the detected adulteration can also be traced successfully. It therefore serves as a guide to food regulatory bodies, food scientists, retailers of these products, consumers, and the general public at large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.