Scaling of silicon (Si) transistors is predicted to fail below 5-nanometer (nm) gate lengths because of severe short channel effects. As an alternative to Si, certain layered semiconductors are attractive for their atomically uniform thickness down to a monolayer, lower dielectric constants, larger band gaps, and heavier carrier effective mass. Here, we demonstrate molybdenum disulfide (MoS) transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode. These ultrashort devices exhibit excellent switching characteristics with near ideal subthreshold swing of ~65 millivolts per decade and an On/Off current ratio of ~10 Simulations show an effective channel length of ~3.9 nm in the Off state and ~1 nm in the On state.
Advanced beyond-silicon electronic technology requires discoveries of both new channel materials and ultralow-resistance contacts 1,2 . Atomically thin two-dimensional (2D) semiconductors have great potential for realizing high-performance electronic devices 1,3 . However, because of metal-induced gap states (MIGS) 4-7 , energy barriers at the metalsemiconductor interface, which fundamentally lead to high contact resistances and poor current-delivery capabilities, have restrained the advancement of 2D semiconductor transistors to date 2,8,9 . Here, we report a novel ohmic contact technology between semimetallic bismuth and semiconducting monolayer transition metal dichalcogenides (TMDs) where MIGS is sufficiently suppressed and degenerate states in the TMD are spontaneously formed in contact with bismuth. Through this approach, we achieve zero Schottky barrier height, a record-low contact resistance (R C ) of 123 Ω μm, and a recordhigh on-state current density (I ON ) of 1135 µA µm -1 on monolayer MoS 2 . We also demonstrate that excellent ohmic contacts can be formed on various monolayer semiconductors, including MoS 2 , WS 2 , and WSe 2 . Our reported R C values are a significant improvement for 2D semiconductors, and approaching the quantum limit. This technology unveils the full potential of high-performance monolayer transistors that are on par with the state-of-the-art 3D semiconductors, enabling further device down-scaling and extending Moore's Law.The electrical contact resistance at a metal-semiconductor (M-S) interface has been an increasingly critical, yet unsolved issue for the semiconductor industry, hindering the ultimate
High-purity semiconducting single-walled carbon nanotubes (s-SWNTs) with little contamination are desired for high-performance electronic devices. Although conjugated polymer wrapping has been demonstrated as a powerful and scalable strategy for enriching s-SWNTs, this approach suffers from significant contaminations by polymer residues and high cost of conjugated polymers. Here, we present a simple but general approach using removable and recoverable conjugated polymers for separating s-SWNTs with little polymer contamination. A conjugated polymer with imine linkages was synthesized to demonstrate this concept. Moreover, the SWNTs used are without prepurifications and very low cost. The polymer exhibits strong dispersion for large-diameter s-SWNTs with high yield (23.7%) and high selectivity (99.7%). After s-SWNT separation, the polymer can be depolymerized into monomers and be cleanly removed under mild acidic conditions, yielding polymer-free s-SWNTs. The monomers can be almost quantitatively recovered to resynthesize polymer. This approach enables isolation of "clean" s-SWNTs and, at the same time, greatly lowers costs for SWNT separation.
A highly sensitive single-walled carbon nanotube/C60 -based infrared photo-transistor is fabricated with a responsivity of 97.5 A W(-1) and detectivity of 1.17 × 10(9) Jones at 1 kHz under a source/drain bias of -0.5 V. The much improved performance is enabled by this unique device architecture that enables a high photoconductive gain of ≈10(4) with a response time of several milliseconds.
Dense alignment of single-walled carbon nanotubes over a large area is demonstrated using a novel solution-shearing technique. A density of 150-200 single-walled carbon nanotubes per micro-meter is achieved with a current density of 10.08 μA μm(-1) at VDS = -1 V. The on-current density is improved by a factor of 45 over that of random-network single-walled carbon nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.