JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
An 18-month field survey of the Pseudo-nitzschia population present in Louisiana coastal waters was conducted comparing species abundance estimates by novel fluorescent molecular probes (16S large subunit rDNA oligonucleotide sequences) with traditional electron and differential-interference light microscopy. While the probe and microscopic analyses agreed on the presence or absence of four common Pseudo-nitzschia species (P. multiseries (Hasle) Hasle, P. pseudodelicatissima (Hasle) Hasle, P. delicatissima (P.T. Cleve) Heiden, and P. pungens (Grunow) Hasle in 66% of the samples analyzed, the probes gave conflicting results with the microscopic methods in the remaining 34% of the samples. The majority of the discrepancies appear to be because of genetic variation within the Pseudo-nitzschia population, especially in P. pseudodelicatissima, indicating that the Monterey Bay Pseudo-nitzschia spp. may not be appropriate reference strains for distinguishing Louisiana Pseudo-nitzschia spp. Additionally, P. pseudodelicatissima has been associated with domoic acid (DA) activity in three field samples, at levels up to 22 times higher than the highest value given in 1 other published reports of DA production by this species. The contemporaneous existence of multiple strains of P. pseudodelicatissima (toxic and nontoxic) presents new challenges to the study of the ecophysiology and population dynamics of this bloom-forming species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.