Bacteriophages can be used effectively to cure bacterial infections. They are known to be active against bacteria but inactive against eukaryotic cells. Nevertheless, novel observations suggest that phages are not neutral for higher organisms. They can affect physiological and immunological processes which may be crucial to their expected positive effects in therapies. Bacteriophages are a very differentiated group of viruses and at least some of them can influence cancer processes. Phages may also affect the immunological system. In general, they activate the immunological response, for example cytokine secretion. They can also switch the tumor microenvironment to one advantageous for anticancer treatment. On the other hand, bacteriophages are used as a platform for foreign peptides that may induce anticancer effects. As bacterial debris can interfere with bacteriophage activity, phage purification is significant for the final effect of a phage preparation. In this review, results of the influence of bacteriophages on cancer processes are presented which have implications for the perspective application of phage therapy in patients with cancer and the general understanding of the role of bacteriophages in the human organism.
Bacteriophages are among the most numerous creatures on earth and they are omnipresent. They are thus in constant natural contact with humans and animals. However, the clinical and technological use of bacteriophages has also become more frequent, which is why all aspects of phage-mammal interactions need to be explored. Bacteriophages are able to interact with mammalian phagocytes. They may inhibit the phagocytosis of bacteria, but they may also undergo phagocytosis themselves. The ability of bacteriophages to reduce reactive oxygen species production by polymorphonuclear leukocytes in the presence of bacteria or their endotoxins was also confirmed. Studies show that the high immunogenicity of bacteriophages may also be employed in anti-tumor treatment. The present knowledge of phage interactions with cellular components of the mammalian immune system is sparse and insufficient, especially considering the increasing interest in the application of these viruses in human life. We believe that continuation of such research is indispensable.
Background: The antibacterial activity of bacteriophages has been described rather well. However, knowledge about the direct interactions of bacteriophages with mammalian organisms and their other, i.e. non-antibacterial, activities in mammalian systems is quite scarce. It must be emphasised that bacteriophages are natural parasites of bacteria, which in turn are parasites or symbionts of mammals (including humans). Bacteriophages are constantly present in mammalian bodies and the environment in great amounts. On the other hand, the perspective of the possible use of bacteriophage preparations for antibacterial therapies in cancer patients generates a substantial need to investigate the effects of phages on cancer processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.