Aims
Aging is the most significant contributor to the increasing prevalence of atrial fibrillation (AF). The gut microbiota dysbiosis is involved in age-related diseases. However, whether the aged-associated dysbiosis contributes to age-related AF is still unknown. Direct demonstration that the aged gut microbiota is sufficient to transmit the enhanced AF susceptibility in a young host via microbiota-intestinal barrier-atria axis has not yet been reported. This study aimed to determine whether gut microbiota dysbiosis affects age-related AF.
Methods and Results
Herein, by using a fecal microbiota transplantation (FMT) rat model, we demonstrated that the high AF susceptibility of aged rats could be transmitted to a young host. Specially, we found the dramatically increased levels of circulating lipopolysaccharide (LPS) and glucose led to the up-regulated expression of NLR family pyrin domain containing 3 (NLRP3)-inflammasome, promoting the development of AF which depended on the enhanced atrial fibrosis in recipient host. Inhibition of inflammasome by a potent and selective inhibitor of the NLRP3 inflammasome, MCC950, resulted in a lower atrial fibrosis and AF susceptibility. Then we conducted cross-sectional clinical studies to explore the effect of aging on the altering trends with glucose levels and circulating LPS among clinical individuals in two China hospitals. We found that both of serum LPS and glucose levels were progressively increased in elderly patients as compared with those young. Furthermore, the aging phenotype of circulating LPS and glucose levels, intestinal structure and atrial NLRP3-inflammasome of rats were also confirmed in clinical AF patients. Finally, aged rats colonized with youthful microbiota restored intestinal structure and atrial NLRP3-inflammasome activity, which suppressed the development of aged-related AF.
Conclusions
Collectively, these studies described a novel causal role of aberrant gut microbiota in the pathogenesis of age-related AF, which indicates that the microbiota-intestinal barrier-atrial NLRP3 inflammasome axis may be a rational molecular target for the treatment of aged-related arrhythmia disease.
Translational Perspective
The current study demonstrates that aged-associated microbiota dysbiosis promotes AF in part through a microbiota–gut–atria axis. Increased AF susceptibility due to enhanced atrial NLRP3-inflammasome activity by LPS and high glucose was found in an aged FMT rat model, and also confirmed within elderly clinical individuals. In a long-term FMT rat study, the AF susceptibility was ameliorated by treatment with youthful microbiota. The present findings can further increase our understanding of aged-related AF and address a promising therapeutic strategy that involves modulation of gut microbiota composition.
The aim of this study was to investigate the expression of circulating microRNAs (miRNAs) in apolipoprotein E (apoE) knockout mice (apoE−/−) and to validate the role of these miRNAs in human coronary artery disease (CAD). Pooled plasma from 10 apoE−/− mice and 10 healthy C57BL/6 (B6) mice was used to perform the microarray analysis. The results showed that miR-34a, miR-21, miR-23a, miR-30a and miR-106b were differentially expressed in apoE−/− mice, and these expression changes were confirmed by real-time quantitative reverse-transcription PCR. Then, miR-34a, miR-21, miR-23a, miR-30a and miR-106b were detected in the plasma of 32 patients with CAD and of 20 healthy controls. Only miR-34a, miR-21 and miR-23a were significantly differentially expressed in the plasma of CAD patients (all P<0.01). In conclusion, miR-34a, miR-21 and miR-23a were elevated in CAD patients, which means that these miRNAs might serve as biomarkers of CAD development and progression.
The microRNA (miRNA) regulation mechanisms associated with atherosclerosis are largely undocumented. Specific selection and efficient validation of miRNA regulation pathways involved in atherosclerosis development may be better assessed by contemporary microarray platforms applying cross-verification methodology. A screening platform was established using both miRNA and genomic microarrays. Microarray analysis was then simultaneously performed on pooled atherosclerotic aortic tissues from 10 Apolipoprotein E (apoE) knockout mice (apoE−/−) and 10 healthy C57BL/6 (B6) mice. Differentiated miRNAs were screened and cross-verified against an mRNA screen database to explore integrative mRNA–miRNA regulation. Gene set enrichment analysis was conducted to describe the potential pathways regulated by these mRNA–miRNA interactions. High-throughput data analysis of miRNA and genomic microarrays of knockout and healthy control mice revealed 75 differentially expressed miRNAs in apoE−/− mice at a threshold value of 2. The six miRNAs with the greatest differentiation expression were confirmed by real-time quantitative reverse-transcription PCR (qRT–PCR) in atherosclerotic tissues. Significantly enriched pathways, such as the type 2 diabetes mellitus pathway, were observed by a gene-set enrichment analysis. The enriched molecular pathways were confirmed through qRT–PCR evaluation by observing the presence of suppressor of cytokine signaling 3 (SOCS3) and SOCS3-related miRNAs, miR-30a, miR-30e and miR-19b. Cross-verified high-throughput microarrays are optimally accurate and effective screening methods for miRNA regulation profiles associated with atherosclerosis. The identified SOCS3 pathway is a potentially valuable target for future development of targeted miRNA therapies to control atherosclerosis development and progression.
Intra-arterial VEGF gene delivery by magnetic microspheres significantly increased DNA stability, transfection efficiency, and targeting specificity, resulting in exogenous VEGF overexpression and attenuated intimal hyperplasia in balloon-injured artery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.