A wafer-bonded InGaAs/Si avalanche photodiode (APD) at a wavelength of 1550 nm was theoretically simulated. We focused on the effect of the In1−xGa
x
As multigrading layers and bonding layers on the electric fields, electron and hole concentrations, recombination rates, and energy bands. In this work, In1−xGa
x
As multigrading layers inserted between Si and InGaAs were adopted to reduce the discontinuity of the conduction band between Si and InGaAs. A bonding layer was introduced at the InGaAs/Si interface to isolate the mismatched lattices to achieve a high-quality InGaAs film. In addition, the bonding layer can further regulate the electric field distribution in the absorption and multiplication layers. The wafer-bonded InGaAs/Si APD, structured by a polycrystalline silicon (poly-Si) bonding layer and In1−xGa
x
As multigrading layers (x changes from 0.5 to 0.85), displayed the highest gain-bandwidth product (GBP). When the APD operates in Geiger mode, the single-photon detection efficiency (SPDE) of the photodiode is 20%, and the dark count rate (DCR) is 1 MHz at 300 K. Moreover, one finds that the DCR is lower than 1 kHz at 200 K. These results indicate that high-performance InGaAs/Si SPAD can be achieved through a wafer-bonded platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.