Small towns lag behind cities in drinking water and sanitation access globally. Closing this gap requires developing service models for areas with both urban and rural characteristics. This study assessed Bushenyi-Ishaka, a municipality in Uganda situated at the rural–urban transition, with a focus on service ladder indictors. Data sources included household interviews (n = 500) and water quality samples from sources and storage containers. Households in more urban (as compared to rural) cells were more likely to use improved water sources (including piped water on-premises), make regular payments for water, rely on shared sanitation facilities, and make use of manual sludge emptying services. Most households (72%) used an unlined pit latrine not intended for emptying and reuse. These findings suggest that small town servicing models should prioritize non-sewered sanitation management, including incentives for safe excreta containment and disposal opportunities. This study also highlights a need for integrated services models to expand rural–urban water and sanitation coverage.
The assessment of a novel enzyme-based assay showed it to be reliable to detect and quantify E. coli in water.
Over 2 billion people globally lack access to safely managed drinking water. In contrast to the household-level, manually implemented treatment products that have been the dominant strategy for gaining low-cost access to safe drinking water, passive chlorination technologies have the potential to treat water and reduce reliance on individual behavior change. However, few studies exist that evaluate the performance and costs of these technologies over time, especially in small, rural systems. We conducted a nonrandomized evaluation of two passive chlorination technologies for system-level water treatment in six gravity-fed, piped water systems in small communities in the hilly region of western Nepal. We monitored water quality indicators upstream of the treatment, at shared taps, and at households, as well as user acceptability and maintenance costs, over 1 year. At baseline, over 80% of tap samples were contaminated with Escherichia coli . After 1 year of system-level chlorination, only 7% of those same taps had E. coli . However, 29% of household stored water was positive for E. coli . Per cubic meter of treated water, the cost of chlorine was 0.06–0.09 USD, similar to the cost of monitoring technology installations. Safe storage, service delivery models, and reliable supply chains are required, but passive chlorination technologies have the potential to radically improve how rural households gain access to safely managed water.
As compared to the Asian lowlands, environmental exposure to arsenic (As) in West Africa has received little attention. Recent studies have found geogenic As contamination of groundwater in many regions in Burkina Faso. As-contaminated groundwater is used for drinking and increasingly also for the irrigation of staple foods. This study assesses the extent to which irrigation and cooking of staple foods in Burkina Faso influence plant uptake and dietary consumption of As, respectively. Using a greenhouse experimental setup, we evaluated the transfer of As from irrigation water spiked with 0, 100, 500, and 1,000 μg/L As(V) to the organs and edible parts of seven commonly consumed vegetables (amaranth, carrot, green bean, lettuce, okra, spinach, and tomato). Next, we cooked the greenhouse-cultivated vegetables and externally purchased foods with As-free and As-spiked waters. The As content in all plant organs increased with increasing As in the irrigation water. With 500 μg/L, the concentrations of As in the edible parts (ordered from highest to lowest) were as follows: spinach (6.6 ± 0.5 μg/g); lettuce (3.9 ± 0.1 μg/g); carrot (3.5 ± <0.1 μg/g); amaranth (2.2 ± <0.1 μg/g); okra (0.9 ± <0.1 μg/g); green bean (0.8 ± <0.1 μg/g); and tomato (0.2 ± <0.1 μg/g). The edible parts of leafy vegetables irrigated with As-spiked water had a higher average As content (4.9 ± 4.5 μg/g) than root (2.9 ± 2.0 μg/g) and fruit/pod vegetables (0.8 ± 1.1 μg/g). Cooking with an excess volume of As-free water reduced the As content in the cooked vegetables by 39% on average, while cooking with As-contaminated water transferred As to the cooked food. The As content in steamed foods was 8 to 18 times lower than in boiled foods. Based on human health risk estimates, we generally recommend to avoid planting leafy and root vegetables in areas with As concentrations above 100 μg/L in irrigation water. In areas with elevated As contamination, mitigation strategies include the cultivation of fruit/pods vegetables such as tomato and okra and steaming the food instead of boiling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.