A major challenge that prohibits the practical application of single/double-transition metal (3d-M) oxides as oxygen evolution reaction (OER) catalysts is the high overpotentials during the electrochemical process. Herein, our theoretical calculation shows that Fe will be more energetically favorable in the tetrahedral site than Ni and Co, which can further regulate their electronic structure of binary NiCo spinel oxides for optimal adsorption energies of OER intermediates and improved electronic conductivity and hence boost their OER performance. X-ray absorption spectroscopy study on the assynthesized NiCoFe oxide catalysts indicates that Fe preferentially dopes into tetrahedral sites of the lattice, which induces high proportions of Ni 3+ and Co 2+ on the octahedral sites (the active sites in OER). Consequently, this material exhibits a significantly enhanced OER performance with an ultralow overpotential of 201 mV cm −2 at 10 mA cm −2 and a small Tafel slope of 39 mV dec −1 , which are much superior to state-of-the-art Ni−Co based catalysts.
A novel hierarchical nanotube array (NTA) with a massive layered top and discretely separated nanotubes in a core–shell structure, that is, nickel–cobalt metallic core and nickel–cobalt layered double hydroxide shell (NiCo@NiCo LDH), is grown on carbon fiber cloth (CFC) by template‐assisted electrodeposition for high‐performance supercapacitor application. The synthesized NiCo@NiCo LDH NTAs/CFC shows high capacitance of 2200 F g−1 at a current density of 5 A g−1, while 98.8% of its initial capacitance is retained after 5000 cycles. When the current density is increased from 1 to 20 A g−1, the capacitance loss is less than 20%, demonstrating excellent rate capability. A highly flexible all‐solid‐state battery‐type supercapacitor is successfully fabricated with NiCo LDH NTAs/CFC as the positive electrode and electrospun carbon fibers/CFC as the negative electrode, showing a maximum specific capacitance of 319 F g−1, a high energy density of 100 W h kg−1 at 1.5 kW kg−1, and good cycling stability (98.6% after 3000 cycles). These fascinating electrochemical properties are resulted from the novel structure of electrode materials and synergistic contributions from the two electrodes, showing great potential for energy storage applications.
Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g(-1) at 1 A g(-1), which remained at 543 F g(-1) when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg(-1)) was maintained even at a high power density of 6000 W kg(-1). An excellent long cycle life of the electrode was observed with a retention of ∼86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO(2) nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications.
Passivating the defective surface of perovskite films is becoming a particularly effective approach to further boost the efficiency and stability of their solar cells. Organic ammonium halide salts are extensively utilized as passivation agents in the form of their corresponding 2D perovskites to construct the 2D/3D perovskite bilayer architecture for superior device performance; however, this bilayer device partly suffers from the postannealing-induced destructiveness to the 3D perovskite bulk and charge transport barrier induced by the quantum confinement existing in the 2D perovskite. Hence, developing direct passivation of the perovskite layer by organic ammonium halides for high-performance devices can well address the above-mentioned issues, which has rarely been explored. Herein, an effective passivation strategy is proposed to directly modify the perovskite surface with an organic halide salt 4-fluorophenethylammonium iodide (F-PEAI) without further postannealing. The F-PEAI passivation largely inhibits the formation of the iodine vacancies and thus dramatically reduces the film defects, resulting in a much slower charge trapping process. Consequently, the F-PEAI-modified device achieves a much higher champion efficiency (21%) than that (19.5%) of the control device, which dominantly results from more efficient suppression of interfacial nonradiative recombination and the subsequent decreased recombination losses. Additionally, the F-PEAI-treated device maintains 90% of its initial efficiency after 720 h of humidity aging owing to the enhanced hydrophobicity and decreased trap states, highlighting good ambient stability. These results provide an effective passivation strategy toward efficient and stable perovskite solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.