In complex rock engineering, understanding the stress state and determining stability and damage evolution are necessary. To more accurately provide a theoretical basis for judging the stress state of bedrock in engineering, this study experimentally addressed the damage evolution of sandstone under loading and unloading conditions. A theoretical relationship between rock resistivity and porosity was obtained according to the Archie formula, which allowed the derivation of the sandstone damage variable expression. Then, sandstone rock samples were used for experimental evaluation, and the feasibility of the theoretically determined damage variable was verified. Finally, through theoretical and experimental comparison analysis, we developed a correlative damage model for sandstone under uniaxial loading and unloading. The results show that the damage variable varies linearly with strain. The proposed correlative equation describes this behavior accurately for loading and unloading conditions. Based on the results of this study, the correlative damage model of sandstone under cyclic loading and unloading conditions can be further improved to be a complete constitutive damage model.
This paper carries out cyclic wetting and drying experiments on the sandstones from the bank slope of an inland port, and explores the deterioration features and acoustic wave parameters and resistivity (AWPR) of the sandstone. The variations in P-wave velocity, attenuation coefficient, nonlinear coefficient, resistivity, and other indices with the cycle number were discussed in details. Then, the correlations between P-wave velocity, resistivity, and physical-mechanical indices were analyzed based on the experimental results. Through the analysis on instantaneous damage analysis, a cumulative damage model was proposed, in the light of the AWPR. The results show that: the evolution of sandstone resistivity can accurately reflect the deterioration features of the sandstone under cyclic wetting and drying, providing a desirable tool to characterize rock strength deterioration and internal damage changes. Taking cycle number into account, the proposed theoretical model for cumulative damage can derive the damage and deterioration of sandstone excellently. By this model, the AWPR at any moment can be acquired in real time on site, which is convenient for engineering application.
The macro mechanical properties of soil-rock mixture are closely related to the meso-structure features of block stones, namely, content, size, and shape. To promote the engineering application of soil-rock mixture, it is important to explore the meso-structure of the mixture, and evaluate its constitutive properties. The previous studies have shown that the wave propagation in the mixture is highly sensitive to the rock content and compaction. To clarify the meso-structure features of soil-rock mixture, this paper establishes a discrete element model of the mixture based on Particle Flow Code (PFC), investigates the wave propagation features in the model with different meso-structure parameters, and analyzes how the meso-structure parameters affect the wave propagation. The results show that: With the growing rock content, the first wave amplitude increased, while the take-off time shortened; With the growing feature size of block stone, the first wave amplitude gradually decreased, while the take-off time gradually lengthened; The soil-rock mixture containing spherical block stones had the highest first wave amplitude and shortest take-off time, while the mixture containing rectangular block stones had the lowest first wave amplitude and longest take-off time. With the growing rock content, the maximum amplitude, dominant frequency, and spectral area all exhibited an increasing trend; With the growing feature size of block stone, the maximum amplitude, dominant frequency, and spectral area all exhibited a decreasing trend.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.