1. Haemoglobin-free single-pass perfusion of isolated rat liver with [14C]aniline, [14C]phenylhydroxylamine, and [14C]nitrosobenzene was carried out. 2. Perfusion with aniline revealed apparent enzyme kinetics for 4-aminophenol formation with Km = 144 microM, Vmax = 51 nmol/min per g liver wet; for 2-aminophenol Km = 144 microM, Vmax = 16 nmol/min per g; for acetanilide Km = 33 microM, Vmax = 25 nmol/min per g. Formation of phenylhydroxylamine and nitrosobenzene was observed at a rate of 1.5 nmol/min per g provided that these metabolites had been trapped within red cells. 3. Perfusion with phenylhydroxylamine displayed a metabolic pattern similar to aniline with apparent phenylhydroxylamine reduction kinetics of Km = 260 microM and Vmax = 600 nmol/min per g. In addition an acid-labile phenylhydroxylamine glucuronide was formed. 4. Perfusion with nitrosobenzene showed very rapid reduction to phenylhydroxylamine and to the metabolites observed with phenylhydroxylamine. In postmicrosomal supernatant, enzymic reduction of nitrobenzene by NADH and NADPH showed Km = 12 microM nitrosobenzene and Vmax = 5000 nmol/min per g. 5. Three per cent of nitrosobenzene was irreversibly bound to liver proteins. After 20 min perfusion with nitrosobenzene, 0.95 mumol of liver glutathione was lost per 10 mumol nitrosobenzene infused; 0.16 mumol of glutathione was released with effusate and bile, 0.46 mumol of glutathionesulphinanilide was produced, the rest, 0.33 mumol, may have formed mixed disulphides.
Tetraacetylphytosphingosine (TAPS) formation by the F-60-10 mating type strain of the yeast
Hansenula ciferrii
, previously observed on agar plates, has been shown to take place in submerged cultures. The optimal conditions for TAPS formation, and the correlation of TAPS production and sugar utilization under aerobic conditions, were studied in 10-liter fermentors. For each gram of glucose consumed, 5 mg of TAPS were formed; for each gram of yeast solids produced, 15 mg of TAPS were synthesized. A 750-liter pilot-plant run yielded 175 g of crude TAPS, which were obtained by hexane extraction of centrifuged yeast cells.
sphingosine (TAPS) formation by the F-60-10 mating type strain of the yeast Hansenula ciferrii, previously observed on agar plates, has been shown to take place in submerged cultures. The optimal conditions for TAPS formation, and the correlation of TAPS production and sugar utilization under aerobic conditions, were studied in 10-liter fermentors. For each gram of glucose consumed, 5 mg of TAPS were formed; for each gram of yeast solids produced, 15 mg of TAPS were synthesized. A 750-liter pilot-plant run yielded 175 g of crude TAPS, which were obtained by hexane extraction of centrifuged yeast cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.