A microfluidic chip with an integrated planar microcoil was developed for Nuclear Magnetic Resonance (NMR) spectroscopy on samples with volumes of less than a microliter. Real-time monitoring of imine formation from benzaldehyde and aniline in the microreactor chip by NMR was demonstrated. The reaction times in the chip can be set from 30 min down to ca. 2 s, the latter being the mixing time in the microfluidic chip. Design rules will be described to optimize the microreactor and detection coil in order to deal with the inherent sensitivity of NMR and to minimize magnetic field inhomogeneities and obtain sufficient spectral resolution.
The fabrication and characterization of a microfluidic device for capillary electrophoresis applications is presented. The device consists of a glass chip which contains a single separation channel as well as an integrated conductivity detection cell. In contrast to most microfluidic glass devices the channels are not wet etched in HF but machined by the newly developed micro powder-blasting technique which allows the creation of microstructures below 100 µm, and additionally makes parallel hole machining at very low costs outside the cleanroom environment possible [1,2]. The integration of the conductivity detector was achieved by leading two thin-film metal electrodes inside the separation channel. For rapid sample injection the chip is mounted inside an autosampler-based capillary electrophoresis platform. The detection electrodes for conductivity detection are read out by lock-in amplifier electronics. First measurements show the successful separation of various ions in the sub-millimeter range.
Powder blasting, or abrasive jet machining (AJM), is a technique in
which a particle jet is directed towards a target for mechanical material
removal. It is a fast, cheap and accurate directional etch technique for
brittle materials such as glass, silicon and ceramics. The particle jet (which
expands to about 1 cm in diameter) can be optimized for etching, while the
mask defines the small and complex structures. The quality of the mask
influences the performance of powder blasting. In this study we tested and
compared several mask types and added a new one: electroplated copper. The
latter combines a highly resistant mask material for powder blasting with the
high-resolution capabilities of lithography, which makes it possible to obtain
an accurate pattern transfer and small feature sizes (<50 µm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.