Aims and Scope Eurasian Journal of Medicine (Eurasian J Med) is an international, scientific, open access periodical published by independent, unbiased, and tripleblinded peer-review principles. The journal is the official publication of
Background The purpose of this study is to examine the dose-dependent effects of vitamin 1,25(OH)2D3 on apoptosis and oxidative stress. Methods In this study, 50 male Balb/c mice were used as control and experiment groups. The mice were divided into 5 groups each consisting of 10 mice. Calcitriol was intraperitoneally administered as low dose, medium dose, medium-high dose and high dose vitamin D groups (at 0.5, 1, 5 and 10 μg/kg, respectively), for three times a week during 14 days. At the end of the study, annexin V was measured by enzyme-linked immunosorbent assay method, and total antioxidant capacity and total oxidant status values were measured by colorimetric method in serum. Hematoxylin eosin staining was performed in liver tissues and periodic acid schiff staining was performed in kidney tissues. Results While comparing the results of medium-high dose (5 μg/kg) and high dose (10 μg/kg) vitamin D administration to that of the control group, it was observed that serum antioxidant status and annexin V levels decreased and glomerular mesenchial matrix ratio increased in kidney (p<0.05). In addition to these findings, in the group receiving high dose vitamin D (10 μg/kg), it was observed that the damage to the liver increased together with the the oxidative stress index values (p<0.05). Conclusions As a result, this study was the first in the literature to report that use of high-dose vitamin D (10 μg/kg) results in oxidant effect, rather than being an antioxidant, and causes severe histopathological toxicity in the liver and kidney.
BackgroundParacetamol is one of the widely used antipyretic and analgesic drug around the world. Many researchers showed that paracetamol caused to hepatotoxicity or nephrotoxicity.ObjectiveIn the present study, we aimed to determine whether betaine has protective effects on hepatotoxicity and nephrotoxicity in neonate rats, following to long term maternal paracetamol exposure.Materials and methodsRandomly chosen neonates, from the neonate pools, were divided into three groups; Control (n=13), APAP (n=13), and APAP+Betaine (n=13). Physiological saline, paracetamol (30 mg/kg/day), and paracetamol (30 mg/kg/day)+betaine (800 mg/kg/day) were orally administered to the relevant groups during the pregnancy period (approximately 21 day). Following to the birth, neonates were decapitated under anaesthesia and tissue samples were taken for biochemical and histological analyses.ResultsThe statistical analysis showed that, malondialdehyde and nitric oxide levels increase significantly in APAP group, while paraoxonase, arylesterase activity and glutathione levels decrease. After the betaine administration, glutathione levels, paraoxonase and arylesterase activities increased while malondialdehyde and nitric oxide levels decreased in APAP+betaine group. These biochemical findings also were supported by histological results.ConclusionIn this study, our biochemical and histological findings indicate that betaine can protect the tissue injury caused by paracetamol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.