Porcine circovirus 4 (PCV4), a novel and unclassified member of the genus Circovirus, was first reported in China in 2019. Aiming to provide more evidence about the active circulation of PCV4, this study screened 335 pooled internal organs and detected the virus (i) at a rate of 3.28%, (ii) from both clinically healthy and clinically sick pigs of various age groups, and (iii) in six out of nine provinces of Korea. The complete genomic sequence of the Korean PCV4 strain (E115) was 1,770 nucleotides in length and had 98.5%–98.9% identity to three PCV4 strains currently available at GenBank. Utilizing a set of bioinformatic programs, it was revealed that the Korean PCV4 strain contained several genomic features of (i) a palindrome stem–loop structure with a conserved nonanucleotide, (ii) packed overlapping ORFs oriented in different directions and (iii) two intergenic regions in between genes encoding the putative replication‐associated protein (Rep) and capsid (Cap) proteins. This study also predicted the presence of essential elements for the replication of circoviruses in all PCV4 strains, for example the origin of DNA replication, endonuclease and helicase domains of Rep, and the nuclear localization signal on the putative Cap protein. Finally, based on the phylogeny inferred from sequences of the putative Rep protein, this study further clarified the genetic relationships between PCV4 and other CRESS DNA viruses in general and circoviruses in particular.
Coronavirus, an important zoonotic disease, raises concerns of future pandemics. The bat is considered a source of noticeable viruses resulting in human and livestock infections, especially the coronavirus. Therefore, surveillance and genetic analysis of coronaviruses in bats are essential in order to prevent the risk of future diseases. In this study, the genome of HCQD-2020, a novel alphacoronavirus detected in a bat (Eptesicus serotinus), was assembled and described using next-generation sequencing and bioinformatics analysis. The comparison of the whole-genome sequence and the conserved amino acid sequence of replicated proteins revealed that the new strain was distantly related with other known species in the Alphacoronavirus genus. Phylogenetic construction indicated that this strain formed a separated branch with other species, suggesting a new species of Alphacoronavirus. Additionally, in silico prediction also revealed the risk of cross-species infection of this strain, especially in the order Artiodactyla. In summary, this study provided the genetic characteristics of a possible new species belonging to Alphacoronavirus.
New viruses are continuously emerging and recently there have been many great concerns on severe acute respiratory syndrome coronavirus (SARS‐CoV‐2). Nanographene oxide (nanoGO) has received much attention and is widely investigated to be utilised in therapy for infectious diseases by viruses. Thus, antiviral activity of nanoGO was evaluated using the porcine epidemic diarrhoea virus (PEDV), bovine coronavirus (BCoV), and SARS‐CoV‐2, which are all Alpha‐ and Beta‐coronavirus. In a virus inhibition assay, the three viruses were inhibited by nanoGO in a dose‐dependent manner, including attempts in the presence of high serum solution which partially mimicked biological fluid.
Avian Metapneumovirus (aMPV) is a causative agent of respiratory disease complex in turkeys and chickens that has recently been detected in Vietnam. Due to its novelty, this study was conducted to elucidate the distribution of aMPV in several provinces in northern Vietnam. By the application of Enzyme-Linked Immunosorbent Assay (ELISA) and nested Reverse Transcription-Polymerase Chain Reaction (RT-PCR), this study demonstrated the circulation of aMPV in 12 out of 14 cities/provinces with positive rates of 37.6% and 17.2%, respectively. All nested RT-PCR positive samples were aMPV subgroup B. By pairing the detection results with age groups, it was observed that aMPV infections occurred in chickens of all ages. Additionally, by genetic characterization, aMPV strains were demonstrated to not be attenuated vaccine viruses and to belong to at least two genetic clades. Overall, the obtained results provided insights into the prevalence of aMPV and indicated a greater complexity of respiratory diseases in chickens in Vietnam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.