Porous concrete pavement is being used as one of the solution to decrease the storm water runoff by capturing and allowing rain water to drain into the land surface. The main problem of porous concrete pavement is the strength itself. The objective of this paper is to review the use and performance of Nano-silica in porous concrete pavement. From the literature review of the previous research, it was found that the conventional porous concrete pavement doesn't has good strength for pavement purpose. An addition of Nano-material will improve the physical and chemical properties of the porous concrete pavement.
Asphalt hardens as a result of an aging process. This study was undertaken to determine the effect of field aging simulated by laboratory aging method of different hot mix asphalt (HMA) mixture. Three types HMA mixtures were used for this study namely Asphaltic Concrete with 10 mm nominal maximum aggregate size (AC 10), Aspaltic Concrete 28 mm (AC 28) and Porous Asphalt 10 mm (PA 10). The resilient modulus test was carried out as an indicator of the performance at a 25 °C and 40 °C. Generally, all samples show similar trend which aged mixture produced slightly higher resilient modulus compared to unaged mixture while an increase in temperature from 25 °C to 40 °C might reduced the resilient modulus up to 88%. This study also found that the difference increment of resilient modulus after the aging process attributed by asphalt content, air void and gradation of respective mixtures.
Porous concrete technology has been used since 1970s in various parts of the United State as an option to complex drainage systems and water retention areas.Porous concrete pavements have become popular as an effective stormwater management device to control the stormwater runoff in pavement. The objective of this paper is to study a pre-review on Porous concrete pavement and it previous laboratory study. From the literature, it was found that, the strength of the porous concrete pavementstill need to improve. To improve the strength of the porous concrete, various additive have been study as a part of porous concrete mix and yetthe optimum condition to produce good porous concrete still not been established. From the previous study, it was found that to prepare the porous concrete laboratory specimen, the use of standard Proctor hammer (2.5kg) and Pneumatic press (70 kPa compaction effort) resulted in the closest properties to the field porous concrete.
The high percentage of porosity in porous concrete pavement tends to decrease its strength. In concrete industry, nano silica is one of the most popular materials that will improve the properties of cementitious materials. This paper, prepared to review the effect of nano silica in cement paste and mortar related to porous concrete pavement. It was found that, by incorporating nano silica with the right composition in cement paste and mortar, it will improve their mechanical properties. By incorporating nano silica in the mixture, it can be predicted that the strengthening effect of nano silica would be further enhanced in porous concrete because the nano silica improve not only the cement paste, but also the interface between paste and aggregate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.