The effects of electron-beam irradiation on the organic semiconductor rubrene and its application as a dosimeter was investigated. Through the measurements of photoluminescence and the ultraviolet photoelectron spectroscopy, we found that electron-beam irradiation induces n-doping of rubrene. Additionally, we fabricated rubrene thin-film transistors with pristine and irradiated rubrene, and discovered that the decrease in transistor properties originated from the irradiation of rubrene and that the threshold voltages are shifted to the opposite directions as the irradiated layers. Finally, a highly sensitive and air-stable electron dosimeter was fabricated based on a rubrene transistor.
This paper presents a metamaterial sensor using a double slit complementary square ring resonator (DS-CSRR) that has been utilized for the measurement of dielectric materials, especially coal powder. The design is optimized for best performance of deep notch depth in transmission coefficient (Magnitude of S21). Sensitivity analysis of transmission coefficient with respect to structure dimensions has been carried out. Metamaterial properties of double negative permitivity and permeability were extracted from the S–parameters of this sensor. The optimized structure is fabricated using low cost FR-4 PCB board. Measured result shows resonance frequency of 4.75 GHz with a deep notch up to −41 dB. Simulated and measured results show good agreement in desired frequency band. For material characterization, first, two known materials are characterized using this metamaterial sensor. Their respective resonances and dielectric constants are known, so the transcendental equation of the sensor is formulated. Afterwards, the proposed sensor is used for dielectric measurement of two types of coal powder, i.e., Anthracite and Bituminous. The measured value of dielectric constant of Anthracite coal is 3.5 and of Bituminous coal is 2.52. This is a simple and effective nondestructive measurement technique for material testing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.