Multiple factors are involved in the etiology of cardiovascular disease (CVD). Pathological changes occur in a variety of cell types long before symptoms become apparent and diagnosis is made. Dysregulation of physiological functions are associated with the activation of immune cells, leading to local and finally systemic inflammation that is characterized by production of high levels of reactive oxygen species (ROS). Patients suffering from inflammatory diseases often present with diminished levels of antioxidants either due to insufficient dietary intake or, and even more likely, due to increased demand in situations of overwhelming ROS production by activated immune effector cells like macrophages. Antioxidants are suggested to beneficially interfere with diseases-related oxidative stress, however the interplay of endogenous and exogenous antioxidants with the overall redox system is complex. Moreover, molecular mechanisms underlying oxidative stress in CVD are not fully elucidated. Metabolic dybalances are suggested to play a major role in disease onset and progression. Several central signaling pathways involved in the regulation of immunological, metabolic and endothelial function are regulated in a redox-sensitive manner. During cellular immune response, interferon γ-dependent pathways are activated such as tryptophan breakdown by the enzyme indoleamine 2,3-dioxygenase (IDO) in monocyte-derived macrophages, fibroblasts, endothelial and epithelial cells. Neopterin, a marker of oxidative stress and immune activation is produced by GTP-cyclohydrolase Ⅰ in macrophages and dendritic cells. Nitric oxide synthase (NOS) is induced in several cell types to generate nitric oxide (NO). NO, despite its low reactivity, is a potent antioxidant involved in the regulation of the vasomotor tone and of immunomodulatory signaling pathways. NO inhibits the expression and function of IDO. Function of NOS requires the cofactor tetrahydrobiopterin (BH4), which is produced in humans primarily by fibroblasts and endothelial cells. Highly toxic peroxynitrite (ONOO -) is formed solely in the presence of superoxide anion (O2 -). Neopterin and kynurenine to tryptophan ratio (Kyn/Trp), as an estimate of IDO enzyme activity, are robust markers of immune activation in vitro and in vivo . Both these diagnostic parameters are able to predict cardiovascular and overall mortality in patients at risk. Likewise, a significant association exists between increase of neopterin concentrations and Kyn/Trp ratio values and the lowering of plasma levels of vitamin-C, -E and -B. Vitamin-B deficiency is usually accompanied by increased plasma homoycsteine. Additional determination of NO metabolites, BH4 and plasma antioxidants in patients with CVD and related clinical settings can be helpful to improve the understanding of redox-regulation in health and disease and might provide a rationale for potential antioxidant therapies in CVD. REVIEWSubmit a
This study provides further evidence of intestinal dysbiosis in AN and sheds light on characteristics of the gut microbiome in different BMI and physical activity groups. These insights point to new modulation possibilities of the gut microbiota which could improve the standard therapy of AN.
In summary, our study describes an influence of SAT topography on adiponectin serum levels and provides first evidence that incipient atherosclerosis is associated with low serum levels of this adipocytokine.
Objective: Obesity-related immune mediated systemic inflammation was associated with the development of the metabolic syndrome by induction of the tryptophan (TRP)-kynurenine (KYN) pathway. The study aimed to assess whether this holds true across the lifespan from juvenility to adulthood. Design and Methods: Five hundred twenty-seven participants aged between 10 and 65 years were analyzed. Standard anthropometric measures, carotid ultrasound, and laboratory analysis including interleukin-6, ultra-sensitive C-reactive protein, lipids, glucose metabolism, neopterin, TRP, KYN levels, and the KYN=TRP ratio were performed. Results: Overweight=obese (ow=ob) adults had significantly increased KYN serum levels and a significantly increased KYN=TRP ratio. In sharp contrast, ow=ob juvenile males aged 18 years showed decreased, females similar KYN and KYN=TRP ratio in comparison to their control counterparts. Also, adult ow=ob subjects with metabolic syndrome showed markedly increased KYN=TRP ratios contrary to decreased KYN=TRP ratios in ow=ob juveniles. Abdominal fat content, characterized by age normalized waist circumference, and not body mass index, had the strongest effect for an increase of the KYN=TRP ratio in adults. Conclusions: TRP metabolism and obesity-related immune mediated inflammation differs markedly between juveniles and adults. While childhood obesity seems to be dominated by a Th2-driven activation, an accelerated production of Th1-type cytokines may pave the way for later atherosclerotic endpoints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.