The unprecedented growth of mobile video traffic is adding significant pressure to the energy drain at both the network and the end user. Energy efficient video transmission techniques are thus imperative to cope with the challenge of satisfying user demand at sustainable costs. In this paper, we investigate how predicted user rates can be exploited for energyefficient video streaming with the popular HTTP-based Adaptive Streaming (AS) protocols (e.g. DASH). To this end, we develop an energy-efficient Predictive Green Streaming (PGS) optimization framework that leverages predictions of wireless data rates to achieve the following objectives 1) minimize the required transmission airtime without causing streaming interruptions, 2) minimize total downlink Base Station (BS) power consumption for cases where BSs can be switched off in deep sleep, and 3) enable a trade-off between AS quality and energy consumption. Our framework is first formulated as a Mixed Integer Linear Program (MILP) where decisions on multi-user rate allocation, video segment quality, and BS transmit power are jointly optimized. Then, to provide an online solution, we present a polynomial-time heuristic algorithm that decouples the PGS problem into multiple stages. We provide a performance analysis of the proposed methods by simulations, and numerical results demonstrate that the PGS framework yields significant energy savings.Index Terms-Wireless access networks, energy efficiency, resource allocation, dynamic adaptive streaming over HTTP (DASH), mobility, channel state prediction.H. Abou-zeid is with the
The advances in wireless communication schemes, mobile cloud and fog computing, and context-aware services boost a growing interest in the design, development, and deployment of driver behavior models for emerging applications. Despite the progressive advancements in various aspects of driver behavior modeling (DBM), only limited work can be found that reviews the growing body of literature, which only targets a subset of DBM processes. Thus a more general review of the diverse aspects of DBM, with an emphasis on the most recent developments, is needed. In this paper, we provide an overview of advances of in-vehicle and smartphone sensing capabilities and communication and recent applications and services of DBM and emphasize research challenges and key future directions.
Resource Allocation (RA) in cellular networks is a challenging problem due to the demanding user requirements and limited network resources. Moreover, mobility results in channel gains that vary signi cantly with time. However, since location and received signal strength are correlated, user mobility patterns can be exploited to predict the data rates they will experience in the future. In this paper, we show that with such predictions, long-term RA plans that span multiple cells can be made. We formulate an optimal Predictive Resource Allocation (PRA) framework for a network of cells as a linear programming problem for three different objectives. Presented numerical results provide a benchmark of the PRA performance in realistic and random user mobility scenarios. Signi cant network and user satisfaction gains are observed compared to RA schemes that do not utilize any predictions.
The ever increasing mobile data traffic and dense deployment of wireless networks have made energy efficient radio access imperative. As networks are designed to satisfy peak user demands, radio access energy can be reduced in a number of ways at times of lower demand. This includes putting base stations (BSs) to intermittent short sleep modes during low load, as well as adaptively powering down select BSs completely where demand is low for prolonged time periods. In order to fully exploit such energy conserving mechanisms, networks should be aware of the user temporal and spatial traffic demands. To this end, this article investigates the potential of utilizing predictions of user location and application information as a means to energy saving. We discuss the development of a predictive green wireless access (PreGWA) framework and identify its key functional entities and their interaction. To demonstrate the potential energy savings we then provide a case study on stored video streaming and illustrate how exploiting predictions can minimize BS resource consumption within a single cell, and across a network of cells. Finally, to emphasize the practical potential of PreGWA, we present a distributed heuristic that reduces resource consumption significantly without requiring considerable information or signaling overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.